Physics

Navigation + Search
Home / Events /

Past Events

Event Date Summary
CANCELED: Maosheng Miao, California State University Northridge,Simulate to discover: from new chemistry under high pressure to novel two-dimensional materials Mon. April 24th, 2017
12:45 am-1:45 am

CANCELED. Will be rescheduled.
Simulate to discover: from new chemistry under high pressure to novel two-dimensional materials
 
Maosheng Miao
Department of Chemistry and Biochemistry
California State University Northridge, California 91330, USA
 
The periodicity of the elements and the non-reactivity of the inner-shell electrons are two related principles of chemistry, rooted in the atomic shell structure. …Read more.

David Pace, General Atomics, San Diego, The Fast and the Furious: Energetic Ion Transport in Magnetic Fusion Devices Wed. April 19th, 2017
12:45 am-1:45 am


The Fast and the Furious: Energetic Ion Transport in Magnetic Fusion Devices
D.C. Pace and the DIII-D National Fusion Facility Team
General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA
David Pace
Nuclear fusion has the potential to be an energy source that powers society without generating greenhouse gases or high-level radioactive waste. …Read more.

Louis F. Piper, Binghamton University, Shining new light on old problems in lithium ion batteries Mon. April 17th, 2017
12:45 am-1:45 am

Shining new light on old problems in lithium ion batteries
 
Louis Piper
Binghamton University, State University of New York
 
Improving the energy storage and release of lithium ion battery is largely limited to the cathode (positive electrode).  …Read more.

Nandini Trivedi, The Ohio State University, Novel magnetic phases in spin-orbit coupled oxides Mon. April 10th, 2017
12:45 pm-1:45 pm

Novel magnetic phases in spin-orbit coupled oxides
Nandini Trivedi,
 
Department of Physics, The Ohio State University
 

Abstract: I will discuss puzzles about magnetism in some of the simplest oxide materials with a single electron in the d-orbital.   …Read more.

Nate Stern, Northwestern University, Monolayer Semiconductor Opto-Electronics: Controlling Light and Matter in Two-Dimensional Materials Mon. April 3rd, 2017
12:45 pm-1:45 pm

Monolayer Semiconductor Opto-Electronics: Controlling Light and Matter in Two-Dimensional Materials

Nathaniel Stern
Department of Physics and Astronomy, Northwestern University
The discovery of monolayer two-dimensional semiconductors of atomic-scale thickness presents a new two-dimensional landscape in which to play with the interaction between light and matter. …Read more.

Paul Kelly, University of Twente, Turning up the heat in first principles Quantum Spin Transport Wed. March 22nd, 2017
12:45 pm-1:45 pm

Turning up the heat in first principles Quantum SpinTransport
 Paul J. Kelly
Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
 
The spin Hall angle (SHA) is a measure of the efficiency with which a transverse spin current is generated from a charge current by the spin-orbit coupling and disorder in the spin Hall effect (SHE). …Read more.

No Seminar, APS March Meeting and Spring Break Mon. March 13th, 2017
1:00 am-1:00 am

…Read more.

Francesca F. Serra, Johns Hopkins University, Control of liquid crystals through topography for optics and assembly Mon. February 27th, 2017
12:45 pm-1:45 pm

Control of liquid crystals through topography for optics and assembly 
Dr. Francesca Serra 
Physics and Astronomy 
Johns Hopkins University

 
Soft materials are a promising tool to explore controllable energy landscapes. …Read more.

Hamza Balci, Kent State University, A Single Molecule Approach to Study Protein, Small Molecule, and G-Quadruplex Mon. February 20th, 2017
12:45 pm-1:45 pm

A Single Molecule Approach to Study Protein, Small Molecule, and  G-Quadruplex Interactions
Hamza Balci
Kent State University, Physics Department, Kent, OH
 
G-quadruplex (GQ) structures are non-canonical nucleic acid secondary structures that form in guanine-rich segments of the genome, most prominently at telomeres. …Read more.

Saw-Wai Hla, Ohio University, Operating Individual Quantum Molecular Machines Mon. February 6th, 2017
12:45 pm-1:45 pm

Operating Individual Quantum Molecular Machines
Saw-Wai Hla
 Department of Physics & Astronomy, Ohio University, OH 45701, USA
and
Nanoscience and Technology Division, Argonne National Laboratory, IL 60439, USA. …Read more.

Mike Boss, NIST, Physics and Impact of Quantitative Magnetic Resonance Imaging Mon. January 30th, 2017
12:45 pm-1:45 pm

Physics and Impact of Quantitative Magnetic Resonance Imaging
Michael Boss,
Applied Physics Division
National Institute of Standards and Technology, Boulder, CO
Each year, millions of U.S. …Read more.

Lucile Savary (MIT) — Michelson Postdoctoral Prize Lecturer Fri. January 27th, 2017
12:45 pm-1:45 pm

Quantum Loop States in Spin-Orbital Models on the Honeycomb and Hyperhoneycomb Lattices

In the quest for quantum spin liquids, the challenges are many: neither is it clear how to look for nor how to describe them, and definitive experimental examples of quantum spin liquids are still missing. …Read more.

Lucile Savary (MIT) — Michelson Postdoctoral Prize Lecturer Tue. January 24th, 2017
11:00 am-12:00 pm

Quantum Spin Ice
Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice compounds, such as “artificial magnetostatics.” In this talk, I will address the effects of terms which induce quantum dynamics in a range of models close to the classical spin ice point. …Read more.

Michael Snure, AFRL, Two dimensional BN an atomically thin insulator, substrate, and encapsulation layer from growth to application Mon. January 23rd, 2017
12:45 pm-1:45 pm

Two dimensional BN an atomically thin insulator, substrate, and encapsulation layer from growth to application
Michael Snure
Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, OH
Since free standing graphene was found in 2004, there has been an explosion of research on atomically thin two dimensional (2D) materials based isolated sheets of layered van der Waals solids.  …Read more.

Lucile Savary (MIT) — Michelson Postdoctoral Prize Lecturer Mon. January 23rd, 2017
4:15 pm-5:15 pm

A New Type of Quantum Criticality in the Pyrochlore Iridates
The search for truly quantum phases of matter is one of the center pieces of modern research in condensed matter physics. …Read more.

Christopher Wolverton, Northwestern University, Accelerating Materials Discovery with Data-Driven Atomistic Computational Tools Mon. December 5th, 2016
12:45 pm-1:45 pm

Accelerating Materials Discovery with Data-Driven Atomistic Computational Tools
Chris Wolverton
Dept. of Materials Science and Eng., Northwestern University, Evanston, IL (USA)
c-wolverton@northwestern.edu
 
Many of the key technological problems associated with alternative energies (e.g., thermoelectrics, advanced batteries, hydrogen storage, etc.) may be traced back to the lack of suitable materials. …Read more.

Marie-Charlotte Renoult, Université de Rouen, Free falling jets of a viscoelastic solution Wed. November 23rd, 2016
12:45 pm-1:45 pm

Title: Free falling jets of a viscoelastic solution
Prof. Marie-Charlotte Renoult
Université de Rouen, France
Abstract:
We conducted free falling jet experiments of a Newtonian solution with a polymer additive, i.e., a viscoelastic solution.Viscoelastic jets usually break up with the formation of beads-on-a-string (BOAS) structures, where large beads are connected by thin threads. …Read more.

Keji Lai, Univ of Texas, Austin/Microwave Imaging of Edge States and Electrical Inhomogeneity in 2D Materials Mon. November 21st, 2016
12:45 pm-1:45 pm

The understanding of various types of disorders in 2D materials, including dangling bonds at the edges, defects in the bulk, and charges in the substrate, is of fundamental importance for their applications in electronics and photonics. …Read more.

Salah Eddine Boulfelfel, Georgia Institute of Technology, Atomic-Scale Modeling of Activated Processes in the Solid State Mon. November 14th, 2016
12:45 pm-1:45 pm

Atomic-Scale Modeling of Activated Processes in The Solid State
Salah Eddine Boulfelfel
School of Chemical and Biomolecular Engineering
Georgia Institute of Technology
In the practice of solid-state chemistry, processes either thermally-activated or induced by external high-pressure are common events. …Read more.

Jim Andrews, Youngstown State University, Coherent Perfect Polarization Rotation–Beyond the Anti-Laser Mon. November 7th, 2016
12:45 pm-1:45 pm

We describe the distinguishing characteristics of coherent perfect optical conversion processes using two-beam interference, as compared to single-beam ‘critical coupling’ processes.  We extend the application of two-port coherent conversion processes to magneto-optical (Faraday) rotation in structured systems and present our recent laboratory demonstration of coherent perfect polarization rotation (CPR) which is a conservative, reversible counterpart to coherent perfect absorption (CPA, or the so-called ‘anti­laser’).  …Read more.

Samo Kralj, University of Maribor, Effective Topological Charge Cancellation Mechanism Mon. October 31st, 2016
1:00 pm-2:00 pm

Effective Topological Charge Cancellation Mechanism
Samo Kralj1,2
1FNM, University of Maribor, Koroška 160, 2000 Maribor, Slovenia
2Jožef Stefan Institute, Jamova 39,1000 Ljubljana, Slovenia
Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions [1]. …Read more.

Patrick Woodward, The Ohio State University, The magnetism of double perovskites containing osmium and rhenium Mon. October 24th, 2016
12:45 pm-1:45 pm

 
Patrick M. Woodward
Department of Chemistry and Biochemistry, The Ohio State University
Over the past several years we have been synthesizing and studying the magnetic properties of A2MOsO6 and A2MReO6 (Mg, Zn, Cr, Fe, Co, Ni) double perovskites in a quest to understand how the sign and strength of the superexchange interactions change as a function of the relative filling of the 3d and 5d orbitals, as well as the geometry of the crystal structure. …Read more.

Nayana Shah, University of Cincinnati, Manifestations of spin-orbit coupling and topology in out-of-equilibrium hybrid superconducting systems Mon. October 10th, 2016
12:45 pm-1:45 pm

Recently there has been a lot of excitement generated by the possibility of realizing and detecting Majorana fermions within the arena of condensed matter physics and its potential implication for topological quantum computing.  …Read more.

Zhaoning Song, University of Toledo,The Formation and Degradation of Metal Halide Perovskites Mon. September 26th, 2016
12:45 pm-1:45 pm

Solar cells based on organic-inorganic metal halide perovskite materials, such as methylammonium lead iodide (CH3NH3PbI3), have been the subject of intense investigation during the past 5 years due to high power conversion efficiencies (>22%) and relatively low manufacturing costs. …Read more.

Observation Of Interlayer Phonons in Transition Metal Dichalogenide Atomic Layers and Heterostructures – Rui He Mon. May 2nd, 2016
12:30 pm-1:30 pm

Interlayer phonon modes in atomically thin transition metal dichalcogenide (TMD) heterostructures were observed for the first time. We measured the low-frequency Raman response of MoS2/WSe2 and MoSe2/MoS2 heterobilayers. We discovered a distinctive Raman mode (30 – 35 cm-1) that cannot be found in any individual monolayers (see Fig. …Read more.

The 17 Position Knob: Tuning Interactions With Rare Earths – Paul C. Canfield Mon. April 18th, 2016
12:30 pm-1:30 pm

Physicists see the rare earth group of elements as a powerful tool for tuning the properties of materials. Choice or control of rare earths can be used to modify (i) the size of the unit cell, (ii) the size of the local moment and degree of coupling, (iii) the size and direction of magnetic anisotropy, (iv) the amount of entropy that can be removed at low temperatures, (v) the degree of band filling, and / or (vi) the degree of hybridization. …Read more.

Mapping the Phase Diagram of a One-Dimensional Topological Superconductor – Sergey Frolov Mon. April 11th, 2016
12:30 pm-1:30 pm

Download the abstract Tunneling spectroscopy measurements on one-dimensional superconducting hybrid materials have revealed signatures of Majorana fermions which are the edge states of a bulk topological superconducting phase. We couple strong spin-orbit semiconductor InSb nanowires to conventional NbTiN superconductors to obtain additional signatures of Majorana fermions and to explore the magnetic-field driven topological phase transition. …Read more.

Nanoscopic Manipulation and Nanoimaging of Liquid Crystals – Charles Rosenblatt Mon. April 4th, 2016
12:30 pm-1:30 pm

Liquid crystals present a remarkable array of fascinating physical phenomena, and are now a >200 billion dollar world-wide industry. As liquid crystals most often are housed in a closed cell or sit atop a substrate, the treatment of the substrate plays a pivotal role. …Read more.

Nanoscopic Manipulation and Nanoimaging of Liquid Crystals – Charles Rosenblatt Mon. April 4th, 2016
12:30 pm-1:30 pm

Liquid crystals present a remarkable array of fascinating physical phenomena, and are now a >200 billion dollar world-wide industry. As liquid crystals most often are housed in a closed cell or sit atop a substrate, the treatment of the substrate plays a pivotal role. …Read more.

Nanomaterials in Liquid Crystal Mediated Interactions – Rajratan Basu Mon. March 28th, 2016
4:00 pm-5:00 pm

In liquid crystals (LC) the effect of nonmesogenic guest-nanoparticles on the LC’s bulk properties often rests on the molecular identification at the nanoscale in order to share and disseminate the `information’ coded into the nanostructure of the nanoparticles. …Read more.

APS March Meeting Mon. March 14th, 2016
12:30 pm-1:30 pm

…Read more.

Preview APS March Meeting Talks – Graduate Students Thu. March 10th, 2016
11:00 am-12:00 pm

Sukrit Sucharitacul, Few-layer III-VI and IV-VI 2D semiconductor transistorsShuhao Liu, Imaging the long diffusion lengths of photo-generated carriers in mixed halide perovskite films
Shuhao Liu, Imaging the long diffusion lengths of photo-generated carriers in mixed halide perovskite films Robert Badea, Magneto-optical mapping of the domain wall pinning potential in ferromagnetic films
Robert Badea, Magneto-optical mapping of the domain wall pinning potential in ferromagnetic films Michael Wolf, Coupling a driven magnetic vortex to individual nitrogen-vacancy spins for fast, nanoscale addressability and coherent manipulation
Michael Wolf, Coupling a driven magnetic vortex to individual nitrogen-vacancy spins for fast, nanoscale addressability and coherent manipulation …Read more.

FMR-Drive Pure Spin Transport in Metals and Magnetic Insulators – Fengyuan Yang Mon. March 7th, 2016
12:30 pm-1:30 pm

Spintronics relies on the generation, transmission, manipulation, and detection of spin current mediated by itinerant charges or magnetic excitations. Ferromagnetic resonance (FMR) spin pumping is a powerful technique in understanding pure spin current. …Read more.

Tailored Radiative Processes of Quantum Dots and 2D Materials – Maiken H. Mikkelsen Mon. February 29th, 2016
4:00 pm-5:00 pm

Metal-dielectric nanocavities have the ability to tightly confine light to small mode volumes resulting in strongly increased local density of states. Placing fluorescing molecules or semiconductor materials in this region enables wide control of radiative processes including absorption and spontaneous emission rates, quantum efficiency, and emission directionality. …Read more.

Aspects of Photonic Topological Insulators – Mikael Rechtsman Mon. February 22nd, 2016
12:30 pm-1:30 pm

I will present the observation of the topological protection of light – specifically, a photonic Floquet topological insulator. Topological insulators (TIs) are solid-state materials that are insulators in the bulk, but conduct electricity along their surfaces – and are intrinsically robust to disorder. …Read more.

Combined First-Principles Molecular Dynamics / Density-Functional Theory Study of Ammonia Oxidation on Pt(100) Electrode – Dmitry Skachkov Mon. February 1st, 2016
12:30 pm-1:30 pm

A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(1 0 0)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. …Read more.

Non-adiabatic Transport in Single-Electron Transistors in the Kondo Regime – Andrei Kogan Mon. November 23rd, 2015
12:30 pm-1:30 pm

Magnetic impurities in conductors alter the Fermi sea: A many-body state (A Kondo singlet) is formed that entangles itinerant carriers and the impurity site. This causes a sharp rearrangement of the density of states near the Fermi surface into a hierarchical set governed by a single energy parameter Tk, the Kondo temperature. …Read more.

Chip-integrated Nanophotonic Structures for Classical and Quantum Devices – Antonio Badolato Mon. November 16th, 2015
12:30 pm-1:30 pm

Chip-integrated nanophotonics investigates the interaction of light with nanostructures integrated on a chip. Lying at the intersection of condensed matter physics, optics, nanotechnology, and materials science, nanophotonics draws upon expertise from broad areas of physics and engineering, while presenting major opportunities to advance fundamental physics and transformative photonic technologies. …Read more.

Michelson Postdoc Lecture – Michael Hatridge Mon. November 9th, 2015
12:30 pm-1:30 pm

…Read more.

Supercooling-Driven Glass Behaviour in Systems Exhibiting Continuous Symmetry Breaking – Sami Kralj Wed. November 4th, 2015
12:30 pm-1:30 pm

Symmetry breaking is ubiquitous in nature and represents the key mechanism behind rich diversity of patterns exhibited by nature. One commonly introduces an order parameter field to describe onset of qualitatively new ordering in a system on varying a relevant control parameter driving a symmetry breaking transition. …Read more.

Photogeneration and Charge Transport in Liquid Crystalline Organic Semiconductors – Sanjoy Paul Mon. October 26th, 2015
12:30 pm-1:30 pm

Organic semiconductors (OSCs) are emerging candidates for the applications in electronic and photonic devices due to material’s low cost and ease of processing. Many materials have been studied to understand the charge generation and transport physics, as well as to develop techniques for facile processing into light emitting diodes, thin film transistors, photovoltaics, and host of other devices. …Read more.

Spins in 2D Materials – Roland Kawakami Mon. October 19th, 2015
12:30 pm-1:30 pm

Two-dimensional crystals such as graphene and monolayer transition metal dichalcogenides (TMD) possess unique properties not found in bulk materials. These materials are atomically-thin, yet are strong enough to remain intact as free standing membranes. …Read more.

Static and Dynamic Flowers in Strained Graphene – Nancy Sandler Mon. October 12th, 2015
12:30 pm-1:30 pm

The coupling of geometrical and electronic properties is a promising venue to engineer conduction properties in graphene. In particular, different regimes can be achieved by manipulating confinement and strain fields, as shown in recent experiments on nanobubbles, drumheads oscillating membranes, and narrow strips deposited on patterned SiC substrates [1]. …Read more.

The Status and Challenges of Lead Halide Perovskite Solar Cells – Yanfa Yan Mon. October 5th, 2015
12:30 pm-1:30 pm

Organic-inorganic methylammounium lead halide perovskites, CH3NH3PbX3 (X= Cl, Br, I), have revolutionized the field of thin-film solar cells. Within five years, the efficiency of lead halide perovskite-based thin-film solar cells have increased rapidly from 3.8% in 2009 to 20.1% for a planar CH3NH3PbI3-based thin-film solar cell in 2014. …Read more.

Device-compatible Defect Engineering of Rare Earth Doped Nitrides – Volkmar Dierolf Mon. September 28th, 2015
12:30 pm-1:30 pm

LED-lighting is at the verge of replacing conventional incandescent light sources. These white LEDs are based on nitride technology which produces the blue emission, that is subsequently converted in a separate phosphorescent layer to provide the additional required colors. …Read more.

Quantum Magnetism in Low Dimensions: An Intriguing Phenomenon Connecting Biology with Physics – Yi-Kuo Yu Mon. September 14th, 2015
12:30 pm-1:30 pm

Magnetism is an important problem in many areas of science including biology, physics and material science. For example, many migratory animals (birds, whales and sea turtles) use magnetism to sense direction for their migrations; computer hard drives store information via magnetism; and so forth. …Read more.

Buckling Instabilities and Recoil Dynamics in Free-Standing Liquid Crystal Filaments – Tanya Ostapenko Mon. May 18th, 2015
12:30 pm-1:30 pm

Quasi-one-dimensional free-standing fluid structures are not often found in nature, but may be formed by any material that can overcome capillary instability. Once this instability is suppressed, long filaments, with a length-to-diameter ratio greater than �, may form. …Read more.

Quantum Phase Transitions in Magnets – Ribhu Kaul Mon. May 11th, 2015
12:30 pm-1:30 pm

…Read more.

Thank You for Flying the ‘Vomit Comet’: Using Parabolic Flights to Examine Quantitatively the Stability of Liquid Bridges Under Varying Total Body Force – Greg DiLisi Mon. April 20th, 2015
12:30 pm-1:30 pm

Liquid bridges were flown aboard a Boeing 727-200 aircraft in a series of parabolic arcs that produced multiple periods of microgravity. During the microgravity portion of each arc, g_eff , the effective total body acceleration due to external forces became negligibly small so that cylindrical liquid bridges could be suspended across two coaxial support posts. …Read more.

V2O5, a Strongly Correlated 2D System with 1D Aspects – Walter Lambrecht Mon. March 30th, 2015
12:30 pm-1:30 pm

V2O5 is a layered material with chains within the layer. I will discuss how this is manifested in its electronic band structure. The quasiparticle self-consistent GW method in this material strongly overestimates the band gap. …Read more.

Predictive First-principles Simulations of Excited Electrons and Ultrafast Electron-ion Dynamics in Complex Materials – Andre Schleife Mon. March 23rd, 2015
12:30 pm-1:30 pm

Rapidly advancing high-performance super computers such as “Blue Waters” allow calculating properties of increasingly complex materials with unprecedented accuracy. In order to fully take advantage of leadership-class machines and to accurately describe modern materials, codes need to scale well on hundreds of thousands of processors. …Read more.

Graphene on Ir(111), Adsorption and Intercalation of Cs and Eu Atoms – Pedrag Lazic Mon. March 16th, 2015
12:30 pm-1:30 pm

Experimental and theoretical study of Cs and Eu atoms adsorption on graphene on Ir(111) will be presented [1,2]. Graphene on Ir(111) surface is an interesting system because graphene has almost pristine electronic structure in it due to its weak bonding character to iridum surface. …Read more.

March Meeting Preview Talks – Graduate Students Mon. February 23rd, 2015
12:30 pm-1:45 pm

APS March Meeting 2015 graduate student talks
Jiayuan Miao: Molecular-dynamics study of the Case-II diffusion of methanol in PMMA
Sukrit Sucharitakul: Field effect vs. Hall mobility in back-gated multilayered InSe FETs
Nicholas J. …Read more.

Exploring Soft Matter with DNA – Tomasso Bellini Mon. February 16th, 2015
12:30 pm-1:30 pm

The combination of solubility, coded pairing and adjustable flexibility make DNA a unique polymer for designing highly-controlled self-assembled complex nanostructures and novel materials. The same tools can be exploited to produce DNA-based systems enabling the exploration of challenging topics in soft matter physics. …Read more.

The Chirality of SiO4 in Materials – David Avnir Wed. February 11th, 2015
12:30 pm-1:30 pm

SiO4 is a common building block of many materials, both crystalline such as quartz, silicates and zeolites, and amorphous, such as silica. Although intuitively one would think that SiO4 is an achiral perfect tetrahedron, in the vast majority of silicon-oxide based materials, that tetrahedron is of lower symmetry, to the degree of being chiral. …Read more.

Spin-dependent Scattering in Graphene: Electronic Birefringence and Kondo Transitions – Sergio Ulloa Mon. February 2nd, 2015
12:30 pm-1:30 pm

Graphene, a monoatomic layer of carbon, is perhaps the simplest and most easily available material where electrons behave as massless Dirac particles. Apart from the many promising technological applications, the study of graphene (and other layered materials) has opened a number of interesting theoretical questions: the microscopic crystalline structure requires an additional degree of freedom (the pseudo spin) that gives rise to effects such as the Klein paradox or Veselago electron lenses. …Read more.

The Break-up of Viscoelastic Jets and Filaments: The Beads-on-a-string Structure – Marie-Charlotte Renoult Mon. December 1st, 2014
12:30 pm-1:30 pm

Capillary pressure can destabilize a thin stream of water and break it up into a succession of small droplets. The addition of a minute quantity (some part per million) of a long, flexible and water-soluble polymer is enough to modify the growth and morphology of this instability and leads, close to breakup, to the development of Beads-on-a-string structures (BOAS) where droplets are connected by thin threads. …Read more.

Soft Materials Approaches to Carbon Nanotubes: from Gels to Composites – Mohammed F. Islam Mon. November 10th, 2014
12:30 pm-1:30 pm

Carbon nanotubes combine low density with exceptional mechanical, electrical and optical properties. Unfortunately, these nanoscale properties have not been retained in bulk structures. I will describe surface modification assisted self‐assembly of single wall carbon nanotube into macroscopic nanotube networks  ‐  hydrogels and aerogels. …Read more.

Soft Magnetic Materials for Energy Applications in Extreme Environments – Matthew A. Willard Mon. October 27th, 2014
12:30 pm-1:30 pm

A fundamental transformation of the transportation sector in the United States is underway. In parallel with advances in renewable energy resources for power generation, the rising use of electric and hybrid vehicles is reshaping the future of public transportation. …Read more.

On Demand 2D Electron Gas at LaAlO3/SrTiO3 Interfaces – Cheng Cen Mon. October 20th, 2014
12:30 pm-1:30 pm

The development of complex oxides over the past fifteen years has raised the prospect for new classes of electronic devices. In particular, it has been discovered that a high-mobility two-dimensional electron gas (2DEG) can be formed at the interface between two high-k insulators: LaAlO3 and SrTiO3. …Read more.

“How Big is the Proton Anyway?” – Amar Vutha Mon. October 13th, 2014
12:30 pm-1:30 pm

The proton is a bound state of quarks and gluons, described by the low-energy limit of quantum chromodynamics. Recent measurements using muonic hydrogen have, however, called our understanding of proton physics into question. …Read more.

Spin-charge Conversion in Interfacial Electron Liquids – Giovanni Vignale Mon. October 6th, 2014
12:30 pm-1:30 pm

Semiconductor quantum wells, inter-metallic interfaces, layered oxides, and monolayer materials are all promising platforms for the observation of spincharge conversion due to strong spin-orbit interaction in the quasi two dimensional electron liquid they host. …Read more.

Ordered self-assembly of molecules on gold substrates, for activated organic monolayers – Prof. Emmanuelle Lacaze Wed. July 17th, 2013
12:30 pm-1:30 pm

Photochromic molecules are characterized by a functional group whose configuration is modified by absorption of light, in a reversible manner. They could be at the basis of new electronic displays which would be activated by light irradiation. …Read more.

Topological transition of graphene from quantum Hall metal to quantum Hall insulator – Prof. XiangRong Wang Fri. May 17th, 2013
12:30 pm-1:30 pm

In this talk, I will first review the basic electronic properties of graphene. In particular, I will explain why the recently observed insulating phase of graphene at charge neutrality point in high magnetic field quantum Hall (QH) experiments is a big surprising. …Read more.

Quantum Fluids of Light – David Snoke Mon. April 29th, 2013
12:30 pm-1:30 pm

In the past few years a new class of solid state optical systems has been developed in which photons have an effective mass and a repulsive interaction between each other. These renormalized photons are known as “polaritons”. …Read more.

Semiconductor nanowires : from LEDs to solar cells – Silvija Gradecak Mon. April 22nd, 2013
12:30 pm-1:30 pm

Semiconductor nanowires are quasi-one-dimensional single-crystals that have emerged as promising materials for the development of photonic and electronic devices with enhanced performance. Nanowires offer solutions to some of the current challenges in science and engineering, but realization of their full potential will be ultimately dictated by the ability to control their structure, composition, and size with high accuracy. …Read more.

Mapping spin-orbit effects in semiconductors – Vanessa Sih Mon. April 15th, 2013
12:30 pm-1:30 pm

Spin-orbit coupling is a consequence of relativity but can be observed and used at the device scale to electrically initialize and manipulate electron spin polarization. Understanding how to exploit spin-orbit effects in non-magnetic semiconductors may enable the development of new devices with enhanced functionality and performance, such as spin-based devices that combine logic and storage and fast optical switches for information processing. …Read more.

Short-range order in nematic liquid crystals formed by reduced symmetry molecules – Sam Sprunt Mon. April 8th, 2013
12:30 pm-1:30 pm

Small molecules constructed from familiar chemical components, but with an unconventional (reduced symmetry) molecular shape, hold promise for developing nematic liquid crystals with macroscopic biaxiality or even polarity. These properties, realized over practical temperature ranges using thermotropic compounds, could open new avenues in technologies including optical displays, mechanical sensors, and low-cost personal power generation. …Read more.

Hybrid Quantum Devices with Single Spins in Diamond – Gurudev Dutt Mon. April 1st, 2013
12:30 pm-1:30 pm

Single spins associated with defects in diamond have emerged as a promising and versatile experimental system. They can be used as qubits in optically connected quantum networks, as sensors for magnetic imaging with sub-micron resolution, as readout heads for detecting and engineering quantum states of nano-mechanical oscillators, and even as probes in biological systems. …Read more.

Point defect studies in ZnO: oxygen vacancy and p-type doping – Walter Lambrecht Mon. March 25th, 2013
12:30 pm-1:30 pm

In the first part of the talk, I will tell you about the controversy about the position of the defect levels for the oxygen vacancy in ZnO and how we tried to resolve it. …Read more.

Semiconductor nanocrystals for room-temperature coherent electronics: A flexible platform for manipulating spin coherence – Jesse Berezovsky Mon. March 4th, 2013
12:30 pm-1:30 pm

One route towards future electronics is to exploit interactions between coherent electron spin states and photons in semiconductor structures. This will require an understanding of the coherent evolution of spin states, the eventual decoherence of these states, and how these states interact with light, all in a scalable room-temperature system. …Read more.

Shedding some light on liquid crystalline organic semiconductors – Brett Ellman Mon. February 25th, 2013
12:30 pm-1:30 pm

We live in a world whose technology is ruled by a small set of inorganic semiconductors, notably silicon. Research on organic semiconductors (OSCs), molecular materials based on organic compounds, seeks to supplement the reigning paradigm rather than to supplant it. …Read more.

Nanostructures in Motion: Probing Surface Science and Fracture Mechanics at Molecular Level – Zenghui Wang Mon. February 18th, 2013
12:30 pm-1:30 pm

Nanomaterials, since their debut, have greatly advanced human knowledge from many aspects. For example, carbon-based nanomaterials, such as carbon nanotube and graphene, have been the subjects of intensive study over the last two decades and greatly improved our understanding of phenomena happening at the nanoscale. …Read more.

Self-Assembly and Packing of Polyhedra into Complex Structures – Michael Engel Mon. February 11th, 2013
12:30 pm-1:30 pm

Isolating the role of building block shape for self-assembly and packing provides insight into the ordering of molecules and the crystallization of colloids, nanoparticles, proteins, and viruses. We investigated a large group of polyhedra whose phase behavior arises solely from their anisotropic shape. …Read more.

Routing Light with Spatial Solitons: Light Localization and Steering in Liquid Crystals – Antonio DeLuca Mon. February 4th, 2013
12:30 pm-1:30 pm

Nematic Liquid Crystals (NLCs) support strong nonlinear effects, most of them due to the high birefringence and non-local response. Light self-confinement via reorientational nonlinearity and nonlocality, yields to the creation of robust light filaments named ‘optical spatial solitons’, which can trap, switch and route optical signals. …Read more.

Terahertz plasmons and magnetoplasmons in graphene – Hugen Yan Mon. December 3rd, 2012
12:30 pm-1:30 pm

Plasmons in metal surfaces and clusters have been extensively studied due to their potential applications in sensing, imaging, light harvesting and optical metamaterials. Graphene is a semimetal with tunable conductivity and hence can support plasmons as well. …Read more.

Quantum Dots and Magnetic Quantum Dots for Biomedical Imaging and Separations – Jessica Winter Mon. November 26th, 2012
12:30 pm-1:30 pm

Quantum dots, semiconductor nanocrystals, have unique optical properties, including narrow emission bandwidths, broad excitation spectra, and remarkable photostability, which have made them excellent candidates for biological imaging. Since their introduction into the biological milieu in 1998, they have been applied for in vitro and in vivo imaging, diagnostic testing, and multiplexing. …Read more.

Quench dynamics in one-dimensional systems – Aditi Mitra Mon. November 19th, 2012
12:30 pm-1:30 pm

How an interacting many-particle system which is initially out of equilibrium evolves in time, is a challenging question, especially for large system sizes where numerical simulations are difficult. The most puzzling issue is understanding the onset of thermalization, a process in which the system completely looses memory of its initial state, with the long time behavior characterized by only one or two parameters. …Read more.

Playing with monomolecular layers: model biological systems and liquid crystal alignment layers – Elizabeth Mann Mon. November 12th, 2012
12:30 pm-1:30 pm

Self-assembly within biological membranes controls structure, from the nano- to the microscale. The same physical processes also apply to synthetic systems. Here, I survey two different model systems for structure and dynamics within molecularly thin films. …Read more.

Half Metallic Ferromagnetism in Complex Oxides and Implications for Spintronics – Nandini Trivedi Mon. November 5th, 2012
12:30 pm-1:30 pm

I will discuss the mechanism behind the remarkable properties of double perovskites like Sr2FeMoO6 that show half-metallic ground states with 100% polarization and a ferromagnetic Tc above room temperature. I will conclude with a broad overview of other remarkable properties that can be achieved by changing the transition metal atoms. …Read more.

FUNCTIONAL FILMS AND CERAMICS – Alp Sehirlioglu Mon. October 29th, 2012
12:30 pm-1:30 pm

The presentation summarizes our recent efforts in developing new functional materials with a focus on operation in extreme environments. Discussion will include both fundamental aspects of behavior and the path to next generation of devices and applications. …Read more.

Qubit-Coupled Mechanics – Matt LaHaye Mon. October 22nd, 2012
12:30 pm-1:30 pm

There is a rapidly growing effort to integrate quantum technologies with mechanical structures in order to manipulate and measure quantum states of mechanics for applications ranging from quantum computing to sensing of weak forces to fundamental explorations of quantum mechanics at massive scales. …Read more.

Michelson Postdoc Prize talk 3:Many-body interactions in two-dimensional crystals – KinFai Mak Fri. October 19th, 2012
12:30 pm-1:30 pm

The problem of electrons in 2D is one of the most important topics in contemporary condensed matter physics. Coulomb interactions between charge carriers in 2D are dramatically enhanced with the much-reduced dielectric screening compared to their bulk counterpart. …Read more.

Michelson Postdoc Prize talk 2:Optics with Dirac electrons – KinFai Mak Tue. October 16th, 2012
12:30 pm-1:30 pm

Optical spectroscopy provides an excellent means of understanding the distinctive properties of electrons in the two-dimensional system of graphene. Within the simplest picture, one has a zero-gap semiconductor with direct transitions between the well-known conical bands. …Read more.

Michelson Postdoc Prize talk 1:Novel two-dimensional systems: graphene and beyond – KinFai Mak Mon. October 15th, 2012
12:30 pm-1:30 pm

The past few years have witnessed a surge of activities in the study of graphene, a stable sheet comprised of just a single atomic layer of carbon atoms in a honeycomb lattice structure. …Read more.

Multiferroic vortices in hexagonal manganites – Weida Wu Mon. October 8th, 2012
12:30 pm-1:30 pm

Topological defects are pervasive in complex matter such as superfluids, liquid crystals, and early universe. They have been fruitful playgrounds for many emergent phenomena. Recently, vortex-like topological defects with six interlocked structural antiphase and ferroelectric domains merging into a vortex core were revealed in multiferroic hexagonal manganites. …Read more.

Into the flat land: Transport studies of ultra-dilute GaAs two-dimensional hole systems in zero field – Jian Huang Mon. October 1st, 2012
12:30 pm-1:30 pm

Low temperature charge transport studies of high purity electron systems encompass fundamental subjects of disorder and electron-electron interaction. 50 years after Anderson’s theory of localization for non-interacting electrons, the question on whether and how electron-electron interaction qualitatively alters the picture is still unsettled. …Read more.

Valley-Electronics in 2D Crystals – Di Xiao Mon. September 24th, 2012
12:30 pm-1:30 pm

In many crystals the Bloch bands have inequivalent and well separated energy extrema in the momentum space, known as valleys. The valley index constitutes a well-defined discrete degree of freedom for low-energy carriers that may be used to encode information. …Read more.

Novel Ferroelectric Polymers as High Energy Density and Low Loss Dielectrics – Lei Zhu Mon. September 17th, 2012
12:30 pm-1:30 pm

The state-of-the-art polymer dielectrics have been limited to nonpolar polymers with relatively low energy density and ultra low dielectric losses for the past decades. With the fast development of power electronics in pulsed power and power conditioning applications, there is a need for next generation dielectric capacitors in areas of high energy density/low loss and/or high temperature/low loss polymer dielectrics. …Read more.

Interfacial Charge Transfer in Nanomaterial Based Light Harvesting Devices – Mat Sfire Mon. September 10th, 2012
12:30 pm-1:30 pm

We purposefully design and study “molecular-like” interfacial interactions between the multidimensional nanometer-scale building blocks that compose larger-scale functional light harvesting devices. Using time-resolved optical spectroscopy, we aim to understand the nature of discrete interfacial electronic states and their role as crucial intermediates promoting efficient interactions between extended systems (e.g., charge transfer). …Read more.

Optical Material Science: Electrodynamics of Nanoscale Assembly, and Lifetime and Degradation Science for Photovoltaics – Roger H. French Mon. April 30th, 2012
12:30 pm-1:30 pm

The optical properties and electronic structure of materials are critical to the development of new optical materials,(1) novel processes of nanoscale assembly, and the viability of advanced energy technologies. They are the origin of the electrodynamic van der Waals-London dispersion (vdW-Ld) interactions (2) which play a universal role in wetting, interfacial energies, and nanoscale assembly.(3) The challenge of nanotechnology is for science to span more than nine orders of magnitude in dimension. …Read more.

Magnetoresistance in Two Dimensions – Arnold J. Dahm Mon. April 23rd, 2012
12:30 pm-1:30 pm

We present measurements of the magnetoresistivity of a weakly interacting 2D electron liquid in an unexplored region near the boundary of the 2D electron gas supported by a liquid helium surface. …Read more.

Electronic structure of disordered solids – David A. Drabold Mon. April 16th, 2012
12:30 pm-1:30 pm

Understanding the physics of structurally disordered materials is a challenge to experimentalists and theorists alike. In this talk, I discuss the character of electronic states in disordered materials and emphasize the interplay between structure and electronic properties. …Read more.

The role of molecular beam epitaxy in fundamental physics through an example: assessing the impact of disorder on the v=5/2 fractional quantum Hall effect – Mike Manfra Fri. March 30th, 2012
11:30 am-12:30 pm

Thirty years after its initial discovery, the fractional quantum Hall effect continues to challenge our understanding of electronic correlations in low dimensions. Throughout this history advances in molecular beam epitaxy (MBE) have played an important role. …Read more.

Micro and Nano Technology at the Lurie Nanofabrication Facility – Robert Hower Fri. March 23rd, 2012
12:30 pm-1:30 pm

This seminar will give an overview of micro and nano technologies at the University of Michigan Lurie Nanofabrication Facility (LNF). In addition, we will present examples of research accomplishments and applications of these technologies in diverse fields including but not limited to Electrical Engineering, Physics, Life Sciences, Biomedical Engineering and Chemical Engineering. …Read more.

Anisotropic response in molecular crystals and the development of Modulated Orientation Sensitive Terahertz Spectroscopy (MOSTS) – Andrea Markelz Mon. March 19th, 2012
12:30 pm-1:30 pm

Since the mid 1980’s there have been predictions of protein structural vibrations with ~ 1meV energies, which corresponds to the terahertz frequency range. These large scale motions involve the correlated movement of many atoms and are associated with the conformational motions involved in protein function. …Read more.

III-Nitride Light-Emitting Diodes for Solid-State Lighting – Hongping Zhao Mon. March 12th, 2012
12:30 pm-1:30 pm

Energy efficiency and renewable energy technologies have significant importance for achieving sustainable energy systems in modern society. Lighting accounts for more than 22% of the total electrical energy usage in US, and technologies based on solid state lighting (SSL) utilizing semiconductor-based material has tremendous promise to replace the existing lighting devices. …Read more.

HgTe as a Topological Insulator – Laurens Molenkamp Mon. March 5th, 2012
12:30 pm-1:30 pm

HgTe is a zincblende-type semiconductor with an inverted band structure. While the bulk material is a semimetal, lowering the crystalline symmetry opens up a gap, turning the compound into a topological insulator. …Read more.

High Tc superconductivity in cuprates: A status report – Mohit Randeria Fri. February 17th, 2012
12:30 pm-1:30 pm

25 years after their discovery, the microscopic problem of high Tc superconductivity in cuprates is still not “solved”. I will focus on summarizing the experiments that show us that the observed phases, with varying carrier concentration, challenge three paradigms of 20th century condensed matter physics. …Read more.

Quantum Signatures of Optomechanical Instability and Synchronization in Optomechanical Arrays – Jiang Qian Mon. February 13th, 2012
12:30 pm-1:30 pm

Optomechanical systems couple light stored in an optical resonant cavity to the motion of a mechanical motion of the cavity walls. Single optomechanical cells have been successfully fabricated in a wide variety of systems. …Read more.

Fe pnictide superconductors – David Singh Mon. February 6th, 2012
12:30 pm-1:30 pm

The 2008 discovery of high temperature superconductivity in doped LaFeAsO by Kamihara and co-workers provided the second class of high Tc materials, the other being the cuprate family discovered in 1986 by Bednorz and Mueller. …Read more.

The Incredible Shrinking Tuning Forks – Nanowire Electromechanical Systems at Radio and Microwave Frequencies – Philp Feng Mon. January 30th, 2012
12:30 pm-1:30 pm

Nanoscience today enables many fascinating low-dimensional structures and new materials with previously inaccessible properties. Nanostructures with mechanical degrees of freedom offer compelling characteristics that make them interesting for both fundamental studies and technological applications. …Read more.

Graphene Optics and Electronics – Marcus Freitag Mon. December 5th, 2011
12:30 pm-1:30 pm

Graphene is a two-dimensional material with conical bands that touch at the Dirac or Charge-Neutrality point. Its zero bandgap and atomically thin body allow it to switch between n-type and p-type conduction when assembled into a field-effect transistor geometry. …Read more.

Charge carrier dynamics in heterostructured semiconductor nanocrystals and nanocrystal solids – Michail Zamkov Mon. November 21st, 2011
12:30 pm-1:30 pm

In the first part, I will present a novel strategy for processing of colloidally stable semiconductor nanoparticles (also known as nanocrystals or quantum dots) into all-inorganic solid films, deployable for photovoltaic applications. …Read more.

A physicist walks into a biology department… – Robin Snyder Mon. November 14th, 2011
12:30 pm-1:30 pm

I present two recent projects in theoretical ecology and point out the connections to math loved by physicists. The first concerns life in a variable environment: when should an organism buffer itself against environmental variation and when should it try to take advantage of environmental variation? …Read more.

The search for Majorana Fermions in semiconductor nanowires – Roman Lutchyn Mon. November 7th, 2011
12:30 pm-1:30 pm

The exploration of topological phases of matter is one of the main challenges in condensed matter physics. Among the exciting recent developments in this direction are the discoveries of the new phases of matter with many intriguing properties such as topological insulators and superconductors. …Read more.

Theoretical studies of magnetic and structural thermodynamics using effective Hamiltonians – Kirill Belashchenko Mon. October 31st, 2011
12:30 pm-1:30 pm

Effective configurational and spin Hamiltonians are commonly used to study magnetic and structural thermodynamics. For some purposes, such as the description of phase transitions in substitutional alloys, they can be routinely constructed by high-throughput first-principles calculations. …Read more.

Photorefractive Polymers for an Updatable Holographic Display – Cory Christenson Mon. October 24th, 2011
12:30 pm-1:30 pm

Holography is a technique commonly used to display objects in three-dimensions, as it has the potential to accurately reproduce all features of the light from a real object. Holographic telepresence has been a compelling fantasy for decades, but modern science has failed to deliver such a system, primarily due to the computational power required and the lack of a suitable recording material. …Read more.

Energetics and Electronic Structure of Point Defects in Oxide Semiconductors: A Density Functional Approach – Fumiyasu Oba Fri. October 21st, 2011
12:30 pm-1:30 pm

Because of the crucial roles of point defects in the physical properties of pristine and doped oxide semiconductors, a fair amount of experimental research has been devoted to their characterization in previous decades. …Read more.

Variational Studies on the Kagome Lattice – Jesse Kinder Mon. October 17th, 2011
12:30 pm-1:30 pm

The two dimensional kagome lattice is a highly frustrated spin system. When spins are placed on the vertices of the lattice with an antiferromagnetic interaction, there is no unique classical ground state. …Read more.

Measuring the electronic properties of single semiconductor nanowire heterostructures using advanced optical spectroscopies – Leigh M. Smith Mon. October 10th, 2011
12:30 pm-1:30 pm

There has been intense interest in recent years to control the electronic structure in quasi one-dimensional nanowires through the fabrication of novel axial and radial heterostructures. Unlike materials in higher dimensions, nanowires have the unique ability to grow axial or radial heterostructures between almost any two materials regardless of lattice mismatch or strain. …Read more.

Moving spins with heat: spin-Seebeck effect in a ferromagnetic semiconductor and Polarization-induced pn-junctions in wide band gap semiconductor nanowires – Roberto Myers Mon. October 3rd, 2011
12:30 pm-1:30 pm

Many proposed spin-based devices require transfer of spin into non-magnetic materials, which is usually accomplished by driving a charge current from a ferromagnet into a non-magnetic material. Heat can also be used to transfer spins into non-magnetic material using the spin-Seebeck effect, as demonstrated by Uchida et al. …Read more.

First-principles electronic structure calculations in energy research – Emmanouil (Manos) Kioupakis Mon. September 26th, 2011
12:30 pm-1:30 pm

As the world strives to reduce its reliance on fossil fuels, materials innovations can help catalyze the switch to renewable energy and the engineering of energy-efficient devices. Powered by modern high-performance computers, s first-principles methods can provide an understanding of fundamental materials processes at the microscopic level and play an important role in the development of novel energy materials and devices. …Read more.

The metal insulator transition of VO2: Shining new (synchrotron-based) light on an old problem – Louis Piper Mon. September 19th, 2011
12:30 pm-1:30 pm

The origin of the abrupt metal-insulator transition (MIT) in VO2 has been a subject of debate for several decades and remains an important problem for condensed matter physics. The change from high temperature metallic rutile phase to low temperature insulating monoclinic occurs abruptly at 360 K for bulk VO2. …Read more.

Probing crystal defects by their vibrational modes – Sukit Limpijumnong Tue. July 5th, 2011
11:00 am-12:00 pm

First principles calculations can be used to study many material properties from a fundamental point of view. This talk will cover the calculations of natural vibration frequencies (local vibrational modes) of impurities and defects in crystals. …Read more.

Uniform Peak Conductivity in Single-Walled Carbon Nanotubes – Jesse Kinder Mon. June 27th, 2011
12:30 pm-1:30 pm

A carbon nanotube is a one-dimensional system in which confinement of charge carriers and an unusual band structure lead to a variety of interesting effects. Many electronic and optical properties of a nanotube depend strongly on its geometry — the way in which a two-dimensional lattice of carbon atoms is rolled up to form the nanotube. …Read more.

Sign reversal in dielectric anisotropy and dielectric relaxation in bent core liquid crystals – Jagdish Vij Mon. June 13th, 2011
12:30 pm-1:30 pm

We investigate the nematic phase of a 4-cyanoresorcinol bisbenozate compound by varying its chain length from C4 to C9 using dielectric and electro-optic spectroscopy. The frequencies and dielectric strengths of the various modes are determined. …Read more.

Experimental observation and manipulation of topological surface states – Yulin Chen Mon. May 9th, 2011
12:30 pm-1:30 pm

Three-dimensional (3D) topological insulators (TIs) are a new state of quantum matter with a bulk gap generated by the spin orbit interaction and odd number of relativistic Dirac fermions on the surface. …Read more.

Strong-arming electron spin dynamics – Jason Petta Mon. May 2nd, 2011
12:30 pm-1:30 pm

A single electron spin in an external magnetic field forms a two-level system that can be used to create a spin qubit. However, achieving fast single spin rotations, as would be required to control a spin qubit, is a major challenge. …Read more.

Scanning tunneling microscopy studies of single magnetic ions in GaAs – Jay Gupta Mon. April 25th, 2011
12:30 pm-1:30 pm

The scaling of electronic devices such as field effect transistors to nanometer dimensions requires more precise control of individual dopants in semiconductor nanostructures, as statistical fluctuations can impact device performance and functionality. …Read more.

Electron-electron interaction and transport in bilayer graphene – Jun Zhu Mon. April 18th, 2011
12:30 pm-1:30 pm

Bilayer graphene, or two layers of graphene stacked together in Bernal stacking, is a unique two-dimensional electron system with hyperbolic bands and a band gap tunable by the application of an electric field through the two layers. …Read more.

Nano is more than size: The role of geometry in the electronic structure of carbon nanostructures – Vince Crespi Fri. April 15th, 2011
12:30 pm-1:30 pm

The atomic-scale order of highly deformable yet chemically inert carbon frameworks animates a wide range of novel structural, optical, and electronic phenomena. For example, the division of surrounding space into two disconnected zones by an impenetrable suspended graphenic sheet enables adsorption of otherwise highly co-reactive species, such as alkali and halogen, in opposite subspaces, with an intense cross-sheet charge transfer that produces a new variant of ionic binding with a uncompensated electrostatic dipoles. …Read more.

Colloidal Quantum Dot Solar Cells – Randy Ellingson Mon. April 11th, 2011
12:30 pm-1:30 pm

Earth’s need for clean energy becomes more evident with each demonstration of the shortcomings of fossil and nuclear energy sources. All carbon-free and nuclear-free energy sources will play important roles in our energy future, but only solar energy can in principle provide all of our energy needs. …Read more.

Ab-initio Heat Transfer: Predicting thermal transport in nanostructures and materials from the atoms up – Derek Stewart Mon. April 4th, 2011
12:30 pm-1:30 pm

While electronic transport has been the focus of intensive research for nearly a century, thermal transport has proven difficult to quantify and model. However, a predictive model for thermal conductivity can improve our understanding of thermoelectric materials, thermal resistance barriers, nanoscale heat transport, and even geologic heat transfer. …Read more.

Toward Graphene-Based Photovoltaics – Liang-shi Li Mon. March 28th, 2011
12:30 pm-1:30 pm

Solution-processable thin-film solar cells can be competitive with silicon-based ones in terms of electricity output/cost ratio and therefore have great potential in solar energy utilization. Due to the requirement for efficient light harvesting, however, so far the most successful low-cost thin-film solar cells require materials containing either rare or toxic metals. …Read more.

InN and ZnO: Unexpected Commonalities – Steven Durbin Mon. February 7th, 2011
12:30 pm-1:30 pm

InN is an infrared bandgap semiconductor (although it hasn’t always been that way); ZnO is an ultraviolet bandgap material used in applications from gas sensors to breakfast cereals. Surprisingly, these ostensibly disparate materials are more closely related than we might think: for both, p-type doping is problematic, the surface exhibits significant electron accumulation, and undoped samples are characterized by a large background electron concentration. …Read more.

Accurate and efficient solutions of wave propagation problems in periodic media – Catalin Turc Mon. January 31st, 2011
12:30 pm-1:30 pm

Many devices designed to guide and control waves rely on periodic structures on the wavelength scale: these include diffraction gratings (used to squeeze multiple signals onto a single optical fiber, and in our highest-powered lasers), photonic crystals (the most promising route to energy-efficient ultra-fast optical computation on a chip), meta-materials (allowing the control of waves in ways impossible in naturally-occurring media), and solar cells. …Read more.

Ferromagnetic semiconductors and the role of disorder – Bruce Wessels Mon. December 6th, 2010
12:30 pm-1:30 pm

Magnetic semiconductors having Curie temperature greater than 300 K are of interest for a wide variety of spintronic device applications. Short-range order has been reported to stabilize ferromagnetism in transition metal-doped III-V compound semiconductors. …Read more.

Chemical Design of Magnetic Nanomaterials – Ana Cristina Samia Mon. November 29th, 2010
12:30 pm-1:30 pm

Nanosized magnetic materials continue to attract great interest due to their wide range of potential applications from data storage to medical diagnostics and therapy. Each application demands unique magnetic characteristics of the nanoparticles. …Read more.

Imaging 3D spatiotemporal hemodynamics of single cortical vessels in vivo using two-photon laser scanning microscopy – Peifang Tian Mon. November 22nd, 2010
12:30 pm-1:30 pm

The dynamics response of individual cerebral vessels to sensory-stimuli is crucial to form a mechanistic understanding of functional imaging technologies, such as functional MRI (fMRI), as well as for understanding neurovascular dysfunction, as occurs in stroke and dementia. …Read more.

Stories of Large Scale Graphene – Yong Chen Mon. November 15th, 2010
12:30 pm-1:30 pm

Graphene has rapidly risen in the past few years to become one of the most actively researched topics in condensed matter physics and nanoscience due to its numerous remarkable properties and potential applications. …Read more.

Modeling defects, microstructure, and shape evolution in orientationally ordered soft materials: nematic elastomers and lipid vesicles – Robin Selinger Mon. November 8th, 2010
12:30 pm-1:30 pm

Liquid crystal elastomers, sometimes called “artificial muscles,” combine the elastic properties of rubber with the molecular order properties of liquid crystals. These fascinating materials stretch, shrink, bend or flap in response to changes in temperature, illumination, or applied fields, due to strong coupling between orientational order and elastic strain. …Read more.

Polymeric materials for printable electronic applications: from synthesis to device characterization – Genevieve Sauve Mon. October 25th, 2010
12:30 pm-1:30 pm

Conjugated polymers are considered by many as leading candidates to produce the next generation of electronics. This belief is based upon several factors: (a) they can be solution-processed using established printing technologies to give flexible, lightweight functional thin films, allowing for low-cost and large-scale production. …Read more.

Absorption/Expulsion of Oligomers and Linear Macromolecules in a Polymer Brush – Sergei Egorov Mon. October 18th, 2010
12:30 pm-1:30 pm

The absorption of free linear chains in a polymer brush was studied with respect to chain size and compatibility with the brush by means of Monte Carlo simulations and Density Functional Theory / Self-Consistent Field Theory at both moderate and high grafting densities using a bead-spring model. …Read more.

Fractionalization in Mesoscopic Rings – Smitha Vishveshwara Mon. October 11th, 2010
12:30 pm-1:30 pm

A spectacular phenomenon that can occur in strongly correlated low dimensional systems is that of fractionalization. In such electronic systems, quasiparticles excitations can carry a fraction of the electron’s charge and can have anyonic quantum statistics which is neither fermionic nor bosonic. …Read more.

Exciton-Plasmon Interactions and Fano Resonances in Nanostructures – Alexander Govorov Mon. October 4th, 2010
12:30 pm-1:30 pm

Coulomb and electromagnetic interactions between excitons and plasmons in nanocrystals cause several interesting effects: energy transfer between nanoparticles (NPs), plasmon enhancement, reduced exciton diffusion in nanowires (NWs), exciton energy shifts, Fano interference effect, and non-linear phenomena [1-3]. …Read more.

Embedded nanopillars for solar cell applications – Jingbiao Cui Mon. September 27th, 2010
12:30 pm-1:30 pm

Nanopillar radial junctions achieved by embedding nanopillars in absorbing thin films have potential for improved performance in solar cells due to increased junction area and improved charge carrier collection. This type of structure is still in its initial stage of development by using expensive and complicated microfabrication processes. …Read more.

Studies of reflection-band defects in 1D polymeric photonic crystals – Guilin Mao Mon. September 20th, 2010
12:30 pm-1:30 pm

Disorder or variation of the periodic structure of 1D-photonic crystal can lead to defects in the reflection band, characterized by one or more spectrally narrow transmission peaks inside that band. At or near such defects, changes in the effective group velocity of the light result in interesting optical phenomena such as Faraday rotation enhancement and gain enhancement in a distributed feedback (DFB) photonic crystal laser. …Read more.

Triboelectric Charging in Granular Systems – Daniel Lacks Mon. September 13th, 2010
12:30 pm-1:30 pm

Have you ever received a shock when you touched a doorknob after shuffling across a carpeted floor? The culprit, known as triboelectric charging, is also responsible for phenomena as innocuous as a rubbed balloon that makes your hair stand on end, or as dramatic as a lightning strike. …Read more.

Massively parallel Density functional calculations for thousands of atoms: KKRnano – Alexander Thiess Mon. August 30th, 2010
12:30 pm-1:30 pm

Existing highly precise density functional method for electronic structure calculations are mostly restricted to the treatment of at maximum a few hundred inequivalent atoms. This limitation leaves many open questions in material science e.g. …Read more.

Michelson Postdoctoral Lecture 2:Optical Atomic Clocks – David Hanneke Tue. May 11th, 2010
12:30 pm-1:30 pm

The most precise measurement techniques involve time, frequency, or a frequency ratio. For example, for centuries, accurate navigation has relied on precise timekeeping — a trend that continues with today’s global positioning system. …Read more.

Michelson Postdoctoral Lecture 1: Entangled Mechanical Oscillators and a Programmable Quantum Computer: Adventures in Coupling Two-Level Systems to Quantum Harmonic Oscillators – David Hanneke Mon. May 10th, 2010
12:30 pm-1:30 pm

The two-level system and the harmonic oscillator are among the simplest analyzed with quantum mechanics, yet they display a rich set of behaviors. Quantum information science is based on manipulating the states of two-level systems, called quantum bits or qubits. …Read more.

Atom Mapping and Correlated Functional Imaging of Nanowires – Lincoln J. Lauhon Mon. April 26th, 2010
12:30 pm-1:30 pm

Nanowires are nanoscale in two dimensions and microscale in a third dimension, providing a wealth of opportunities to exploit novel nanoscale electronic, optical, magnetic, and thermal properties in devices with well-defined microscale electrical contacts. …Read more.

Controlling Spin and Magnetism in Quantum Dots – Rafal Oszwaldowski Mon. April 19th, 2010
12:30 pm-1:30 pm

A promising approach for the next generation of applications for information storage and processing comes from the field of spintronics (spin-electronics) that seeks to use spin of carriers, rather than just their charge [1]. …Read more.

Diffusion Tensor Imaging: A Guided Tour – Cheng Guan Koay Thu. April 15th, 2010
12:30 pm-1:30 pm

Diffusion tensor imaging (DTI) is a noninvasive magnetic resonance (MR) technique for investigating tissue microstructure and white matter architectural organization in the brain. In this talk, we will present a basic introduction to DTI and give a guided tour through recent developments in the analysis of diffusion tensors from the least squares estimations of the diffusion tensor to the elliptical cone of uncertainty for characterizing uncertainty of the major eigenvector (or principal axis) of the diffusion tensor. …Read more.

Through A Glass, Darkly: Obtaining Quantitative Information from Microscope Images of Liquid Crystals – Tim Atherton Tue. April 13th, 2010
12:30 pm-1:30 pm

Liquid Crystalline phases are identified by their beautiful textures when viewed under the polarizing microscope. These two-dimensional textures contain much information about the ordering of the liquid crystal, but it is generally difficult to extract quantitative information from them since the mapping from the order parameter field to the image is not injective. …Read more.

Hard tetrahedra and Quasi-Crystals – Rolfe G. Petschek Mon. April 5th, 2010
12:30 pm-1:30 pm

I will describe the packing of hard tetrahedra. Contrary to recent speculations, Monte Carlo simulations show that at finite temperatures this Platonic solid packs with quite high volume fractions and has very complicated, probably quasi-crystalline phases and (likely) a modestly complicated phase diagram. …Read more.

Periodic networks in heterogeneous materials: theory and multiscale homogenization for soling heat transfer and deformation problems – Viktoria Savatorova Mon. March 29th, 2010
12:30 pm-1:30 pm

All materials consist of some heterogeneity. In many cases heterogeneity can affect the properties of the whole sample, and this fact stimulates the desire to create heterogeneous materials with definite desired properties. …Read more.

Ultrafast physics in photosynthesis: Mapping sub-nanometer energy flow – Naomi Ginsberg Thu. February 25th, 2010
12:30 pm-1:30 pm

In the first picoseconds of photosynthesis, photoexcitations of chlorophyll molecules are passed through a network of chlorophyll-binding proteins to a charge transfer site, initiating the conversion of absorbed energy to chemical fuels. …Read more.

Single cell studies using microfluidic devices – Amy Rowat Thu. February 18th, 2010
12:30 pm-1:30 pm

Cells that are genetically identical can exhibit differences in phenotype, however, such variation remains masked in bulk measurements. To capture variability among individual cells, as well as the behavior of subpopulations of cells, requires studies with single cell resolution. …Read more.

Imaging coherent electron transport in graphene – Jesse Berezovsky Thu. February 11th, 2010
12:30 pm-1:30 pm

The coherent flow of electrons through a graphene device is an intriguing physical problem, which must be understood for future quantum technologies. We have developed a low-temperature scanning probe technique for mapping the effect of a single movable scatterer on coherent transport in graphene. …Read more.

Principles and Applications of Extrinsic (Doped) Organic Semiconductors – Calvin Chan Mon. February 1st, 2010
12:30 pm-1:30 pm

Organic semiconductors have garnered much attention for many promising applications, including organic light-emitting diodes, photovoltaic cells, thin-film transistors, thin-film batteries and spintronic devices. Despite this demand, robust and efficient organic electronic devices have been limited by the quality of organic semiconductor materials and a poor understanding of their underlying physics. …Read more.

Gigahertz dynamics of a strongly driven single spin in diamond – G. D. Fuchs Mon. January 25th, 2010
12:30 pm-1:30 pm

Nitrogen vacancy (NV) center spins in diamond have emerged as a promising solid-state system for quantum information and communication. Techniques to manipulate a single spin have been used to study the long room temperature spin coherence times of NV centers as well as their interactions with nearby electron and nuclear spins. …Read more.

ZnGeAs2: A Novel Semiconductor for Photovoltaics – Tim Peshek Mon. January 4th, 2010
12:30 pm-1:30 pm

> I will motivate the fabrication of tandem thin film devices based solely on II-IV-V2 compounds as a target for wide-scale PV deployment. Third generation solar cells must overcome the Shockley-Queisser (SQ) limitation of single diode solar cells; the fabrication of multiple junction solar cells is one avenue to circumvent the SQ limit. …Read more.

Spin Fluctuations in Magnetic Quantum Dots – Andre Petukhov Mon. December 14th, 2009
12:30 pm-1:30 pm

…Read more.

Quantum Simulation of Strongly Correlated Quantum Dots Out of Equilibrium – Jong Han Mon. November 30th, 2009
12:30 pm-1:30 pm

The study of strong correlation physics out of equilibrium has become one of the most exciting fields in condensed matter theory of today. The physical systems of interest include quantum dots displaying the zero-bias-anomaly (ZBA) due to the Kondo phenomena. …Read more.

From Water Splitting to Hydrogen Storage: The Art of First-Principles Predictions in Materials Design – Shengbai Zhang Mon. November 9th, 2009
12:30 pm-1:30 pm

Green and renewable energy is important to our environment, for sustainable energy supply, and offers new opportunities for economical growth. In the past, materials research has played an essential role in the development of the science bases necessary for green energy technology. …Read more.

Quantum Mechanics of Point Defects and Diffusion in α-Al2O3 – Arthur Heuer Mon. November 2nd, 2009
12:30 pm-1:30 pm

Ab-initio DFT calculations have been made of native point defects – aluminum vacancies and interstitials and oxygen vacancies and interstitials – and point defect clusters, in both pure sapphire (α-Al2O3) and sapphire doped with the aliovalent solutes Mg and Ti. …Read more.

Computer Simulations of Self-Assembly of Metallo-Supramolecular Networks – Elena Dormidontova Sat. October 31st, 2009
12:30 pm-1:30 pm

Using Monte Carlo simulations we studied formation of reversible metallo-supramolecular networks based on 3:1 ligand-metal complexes between end-functionalized oligomers and metal ions. The fraction of 1:1, 2:1 and 3:1 ligand-metal complexes in reversibly associated structures was analyzed as a function of oligomer concentration, c and metal-to-oligomer ratio. …Read more.

Magnetic Properties of Rare Earth Doped GaN – John M. Zavada Mon. October 26th, 2009
12:30 pm-1:30 pm

Rare earth (RE) doped GaN has been widely investigated for applications in displays and optical applications due to the strong visible infared (IRR) emissions from RE3+ ions in such a wide-band-gap material. …Read more.

Nanoscale memristive devices for memory and logic applications – Wei Lu Mon. October 19th, 2009
12:30 pm-1:30 pm

Memristor (a word created from “memory” and “resistor” ) has been claimed as the ” missing circuit element”and research on nanoscale memristor devices has gained substantial interest recently after the development of a simple device model last year. …Read more.

A birds-eye view of nonlinear optics: using scale invariance to optimize the molecular response – Mark Kuzyk Wed. October 14th, 2009
12:30 pm-1:30 pm

Nonlinear optical materials show great promise in a broad range of applications from cancer therapies and medical imaging to increasing the speed of the internet. Making such applications possible requires molecules that interact more strongly with light. …Read more.

Thermal Transport and Thermoelectric Energy Conversion in Nanomaterials – Li Shi Mon. October 5th, 2009
12:30 pm-1:30 pm

The high charge carrier mobility and thermal conductivity of carbon nanotubes and graphene have attracted interest in their applications for nanoelectronics and thermal management. On the other hand, the suppressed lattice thermal conductivity of semiconducting nanowires and thin films may give rise to enhanced figure of merit of thermoelectric materials. …Read more.

Band structure information from soft x-ray spectroscopy – Andrew Preston Mon. September 28th, 2009
12:30 pm-1:30 pm

The optical and electric properties of a material are entirely dependent on the ordering of its electrons. In crystalline materials quantum effects constrain the electrons to bands that are best described in terms of crystal momentum. …Read more.

Formation and properties of Cu_2S-CdS and Ag_2S-CdS Nanorod Heterostructures – Denis Demchenko Mon. September 21st, 2009
12:30 pm-1:30 pm

A partial cation exchange has been used to synthesize Cu_2S-CdS and Ag_2S-CdS nanocrystal heterostructures, with two very different morphologies. Cu^+ cation exchange takes place preferentially at the ends of CdS nanorods, Cu_2S segments grow into the nanorod from both ends. …Read more.

Recent Advances in Organic (Opto)electronic Materials – Oksana Ostroverkhova Wed. September 16th, 2009
12:30 pm-1:30 pm

There is growing interest in using organic (opto)electronic materials for applications in electronics and photonics. In particular, organic semiconductor thin films offer several advantages over traditional silicon technology, including low-cost processing, the potential for large-area flexible devices, high-efficiency light emission, and widely tunable properties through functionalization of the molecules. …Read more.

Ballistic Quasiparticles in Superfluid 3He: A Non-Newtonian Gas – George Pickett Mon. May 18th, 2009
12:30 pm-1:30 pm

We can cool superfluid 3He to below 100 microkelvin where the number of unpaired 3He atoms is only of the order of 1 in 10^8. Here these quasiparticle excitations move ballistically as they are so tenuous that collisions are highly improbable. …Read more.

Chirality and Kondo Physics in Graphene – Herb Fertig Mon. April 27th, 2009
12:30 pm-1:30 pm

Graphene, a two-dimensional network of carbon atoms, exhibits unique electronic properties because it supports low energy, massless, Dirac-like quasiparticles. The quantized Hall effect in this system has an unusual set of plateaus, whose locations may be interpreted in terms of a geometric “Berry’s phase” related to the chirality of the Dirac particles. …Read more.

Landau Level Spectroscopy of Graphene – Zhigang Jiang Mon. April 20th, 2009
12:30 pm-1:30 pm

Graphene, a single atomic sheet of graphite, is a monolayer of carbon atoms arranged in a hexagonal lattice. The unique electronic band structure of graphene exhibits an unusual low-energy linear dispersion relation, radically different from the parabolic bands common to all previous two-dimensional systems. …Read more.

First-principles theory of coloration on WO3 upon charge insertion – Peihong Zhang Mon. April 13th, 2009
12:30 pm-1:30 pm

Electrochromic matrials exchibit reversible and persistent change of the optical properties, hence the color, upon applying an electrical pulse that injects both electrons and compensating ions into the materials. Despite much research effort, a first-principles theory for the coloration mechanism in this material has not emerged. …Read more.

Screening Plasmonic Materials using Nanopyramidal Arrays – Teri Odom Mon. April 6th, 2009
12:30 pm-1:30 pm

Surface plasmon polaritons (SPPs) are responsible for optical phenomena including negative refraction, surface enhanced Raman scattering, and nanoscale focusing of light. Although many materials support SPPs, the choice of metal for most applications has been based on traditional plasmonic materials such as Ag and Au because there have been no side-by-side comparisons of different materials on well- defined, nanostructured surfaces. …Read more.

Fast Protonic Conductivity in Crystalline Materials: Highly Sulfonated Aromatics – Yuriy Tolmachev Tue. March 31st, 2009
12:30 pm-1:30 pm

Polymer Electrolyte Fuel Cells are expected to replace internal combustion engines as power sources in transportation during our lifetime. The talk will discuss briefly main issues impeding commercialization of PEFC technology as well as the PEFC research at Kent State. …Read more.

Dipole in a Magnetic Field, Work, and Quantum Spin – Robert Deissler Mon. February 23rd, 2009
12:30 pm-1:30 pm

Place an atom in a nonuniform static external magnetic field and, because of the interaction between the atom’s magnetic moment and the magnetic field gradient, the atom will accelerate. This, of course, is what occurs in the classic Stern-Gerlach experiment. …Read more.

Synthesis of Novel Fuel Cell Membranes with Aligned Proton Conducting Pathways – Matt Yates Mon. February 16th, 2009
12:30 pm-1:30 pm

Novel approaches have been developed to engineer the microstructure of proton conducting membranes to enhance proton transport. Polymer composite and ceramic membranes were synthesized in which proton conducting pathways are aligned through the plane of the membrane. …Read more.

Molecular materials for dynamic holography and lasing applications – Jarek Mysliewiec Wed. February 4th, 2009
12:30 pm-1:30 pm

The subject of the presentation will be focused on molecular materials like liquid crystals, photochromic polymers or modified DNA-dye systems and their possible applications for lasing and dynamic optical information recording. …Read more.

Bent-core nematic liquid crystals: Opportunities and mysteries – Jim Gleeson Mon. December 1st, 2008
12:30 pm-1:30 pm

…Read more.

Phonon expansion and dispersion: Condensed matter channels: Material diagnosis – Dov Hazony Mon. November 24th, 2008
12:30 pm-1:30 pm

Propagating basic acoustic pulses may behave as phonons. They can be characterized and utilized to evaluate channels through which they have travelled. …Read more.

Terahertz Time-Domain Measurement of Ballistic Electron Resonance in a Single-walled Carbon Nanotube – Zhaohui Zhong Mon. November 17th, 2008
12:30 pm-1:30 pm

The terahertz (~ 100 GHz to 10 THz) electrical properties of nanomaterials are of relevance both to the fundamental science of low-dimensional systems and to the operation of next-generation smaller and faster electronics. …Read more.

Room temperature ferromagnetism in semiconducting oxides – Chandran Sudakar Mon. November 10th, 2008
12:30 pm-1:30 pm

Diluted magnetic semiconductors are formed when magnetic transition metal ions are doped in small concentrations into a semiconductor host lattice. The first reports of ferromagnetism being observed at room temperature in a dilutely doped semiconducting oxide film attracted a great deal of attention, but were also met with considerable skepticism. …Read more.

Spin injection, transport, and control in Silicon – Ian Appelbaum Mon. November 3rd, 2008
12:30 pm-1:30 pm

The intrinsic angular momentum of an electron (spin) – and its associated magnetic moment – can encode information: spin “up” or “down” can be interpreted as “0” or “1”, and potentially be used as the physical realization of a new paradigm of computing beyond electronics. …Read more.

Coupling nanomechanical motion to electromagnetic fields through the Casimir effect and surface evanescent waves – HoBun Chan Fri. October 24th, 2008
12:30 pm-1:30 pm

The miniaturization of mechanical devices opens new opportunities for investigating and exploiting novel phenomena that occur for components in close proximity. The Casimir force, for example, originates from the zero-point quantum fluctuations of the electromagnetic fields. …Read more.

Charge Transport Phenomena in MilliKelvin Germanium and Detectors of the Cryogenic Dark Matter Search – Kyle Sundqvist Mon. October 20th, 2008
12:30 pm-1:30 pm

The Cryogenic Dark Matter Search (CDMS) seeks to detect putative weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring the number of charge carriers and the energy in non-thermalized phonons created by particle interactions in intrinsic Ge and Si crystals at a temperature of 40 mK, a signature response for each event is produced. …Read more.

High Resolution Spectroscopy of the Quantum Hall Liquid – Oliver Dial Mon. October 13th, 2008
12:30 pm-1:30 pm

The single particle spectrum of an electronic system is a measure of the ease of inserting a single, whole electron into the system at a particular energy. A peak in this spectrum indicates that there is a long-lived state available for electrons at that particular energy — in essence, that it is possible to form a quasiparticle at that energy. …Read more.

Pedigrees and Partition Functions – Joseph Abraham Mon. October 6th, 2008
12:30 pm-1:30 pm

I will review some key concepts and computations in statistical genetics and discuss some analogies with the calculations on disordered spin systems. No prior knowledge of genetics is assumed. …Read more.

Electrical, Mechanical, and Electromechanical Studies of Carbon Nanotubes and Graphene – James Hone Wed. September 24th, 2008
12:30 pm-1:30 pm

This talk will report on studies of the properties of carbon nanotubes of known chiral index, as determined by Rayleigh scattering spectroscopy. These properties include the mechanical stiffness, the electromechanical response, and basic electrical transport properties. …Read more.

Heterostructured quantum dots: growth and characterization – Kurt Eyink Mon. September 15th, 2008
12:30 pm-1:30 pm

Quantum dots (QDs) have been receiving considerable attention lately due to the unique properties, which arise due to the confinement of the electron and holes in a lower band gap material. …Read more.

Collective molecular motor using chiral liquid crystalline thin films – Hiroshi Yokoyama Mon. September 8th, 2008
12:30 pm-1:30 pm

…Read more.

Near-field optical scanning spectroscopy of photonic nanostructures – Alexander Mintairov Mon. April 21st, 2008
12:30 pm-1:30 pm

I will describe the experiments of using high spatial resolution near-field temperature-dependent magneto-photoluminescence to study optical and structural properties of variety semiconductor quantum dots emitting from violet to near-infrared. The probing of the mode fields in micro-disk and photonic crystal cavities using near-field technique will also be discussed. …Read more.

Ab-initio Assisted Process and Device Simulation for Nanoelectronic Devices – Wolfgang Windl Mon. April 14th, 2008
12:30 pm-1:30 pm

The continuing miniaturization of traditional semiconductor devices deep into the nano-realm and novel concepts such as molecular devices require an unprecedented attention to the detailed geometry and electronic properties on the atomic scale. …Read more.

Some examples of theory and computation of properties of transition metal nitrides – Sanjay Khare Mon. April 7th, 2008
12:30 pm-1:30 pm

A convergence of many factors has caused the emergence of growing synergy between theoretical and experimental research in condensed matter and materials science. Our current research interests that are benefiting from this symbiosis will be briefly discussed. …Read more.

Laboratory studies of atmospheric aerosol nucleation – Shan-Hu Lee Mon. March 31st, 2008
12:30 pm-1:30 pm

…Read more.

Flow diagram and Quantum critical behavior of the two-dimensional metal-insulator transition (2DMIT) – Alex Punnoose Mon. March 24th, 2008
12:30 pm-1:30 pm

Early speculation that an electron gas in two dimensions is always an insulator was upset when experiments in relatively high mobility systems showed signs of metallic behavior. Systematic experiments forced us to re-examine the interplay between electron-electron interactions and disorder. …Read more.

Universal Gelation of Particles with Short-ranged Attraction – Peter J. Lu Thu. February 28th, 2008
12:30 pm-1:30 pm

Nanoscale or colloidal particles are exceptionally important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behavior to a wide variety of complex fluids, from yoghurt to cast ceramics. …Read more.

Metallic and Magnetic Nanostructured Thin Films Mon. February 25th, 2008
12:30 pm-1:30 pm

The correlation between structure and magnetism in magnetic materials continues to offer exciting opportunities at the nano-scale. For example the fabrication of novel magnetic materials in ultra-thin film form has led to perpendicular magnetic anisotropy and in some cases also enhanced magneto-optical behavior. …Read more.

Macrophase ordering in ionomers under external potential – Elshad Allahyarov Mon. February 18th, 2008
12:30 pm-1:30 pm

Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion-like ionomer by the imposition of a strong electric field. We observe that proton transport through this polymer electrolyte membrane is accompanied by morphological changes that include the formation of structures aligned along the direction of the applied field. …Read more.

Ubiquity of Entanglement – Stanislaw Szarek Mon. February 11th, 2008
12:30 pm-1:30 pm

Entanglement is thought to be the critical resource in quantum computing and quantum communication. We explain how this physical concept is related to ideas and problems in mathematics, and particularly in functional analysis, convex analysis and high- dimensional geometry. …Read more.

Bilayer Quantum Hall Effect – Bahman Roostaei Mon. February 4th, 2008
12:30 pm-1:30 pm

In a closely spaced double quantum well (DQW), electrons are thought to form an interlayer coherent state when a perpendicular magnetic field is applied such that the total Landau level filling factor one. …Read more.

Nanotubes beyond carbon: theory of gallium nitride and boron nanotubes – Sohrab Ismail-Beigi Mon. January 28th, 2008
12:30 pm-1:30 pm

Although atomically-thin nanotubes of other elements are now fabricated, carbon nanotubes are probably the best known examples of nano-materials. They provide ideal cases for studying a variety of nanoscopic effects: e.g., geometric and quantum confinement of electrons, enhanced Coulomb interactions in one dimension, and curvature effects. …Read more.

Near-field optical scanning spectroscopy of photonic nanostructures – Alexander Mintairov Mon. December 3rd, 2007
12:30 pm-1:30 pm

I will describe the experiments of using high spatial resolution near-field temperature-dependent magneto-photoluminescence to study optical and structural properties of variety semiconductor quantum dots emitting from violet to near-infrared. The probing of the mode fields in micro-disk and photonic crystal cavities using near-field technique will also be discussed. …Read more.

Phonons in ZnGeN2 and related materials: experiment and theory – Tim Peshek and Tula Paudel Mon. November 19th, 2007
12:30 pm-1:30 pm

This seminar will consist of three practice talks for the MRS Fall meeting. Tim will first talk about an experimental determination of the free energy of formation of GaN from its elements. …Read more.

Thermo-acoustic waves near the liquid-vapor critical point : the sound of heat – Pierre Carlès Wed. November 14th, 2007
12:30 pm-1:30 pm

A fluid near its liquid-vapor critical point exhibits puzzling heat transfer dynamics, as temperature relaxation becomes faster and faster near the critical point (an observation which contradicts the expected critical slowing down of diffusive processes). …Read more.

Identifying defect structures by first principles XANES – Sukit Limpijumnong Mon. November 12th, 2007
12:30 pm-1:30 pm

First principles calculations allow one to model materials from fundamental quantum mechanics without bias. Because the calculations contain detailed atomic coordinates and electron distributions as well as their wave functions, most measurable properties including the X-ray Absorption Near Edge Structures (XANES) can be simulated. …Read more.

Synthesis and Characterization of GaGdN – Cammy Abernathy Mon. November 5th, 2007
12:30 pm-1:30 pm

The past decade has seen a rise in interest in the area of dilute magnetic semiconductors (DMSs). In part, this has been directed by a push towards harnessing the spin of electrons for device usage in the field of spintronics. …Read more.

Controlling light on the nanoscale: imaging and spectroscopy with ultrahigh spatial and temporal resolution – Markus Raschke Mon. October 29th, 2007
12:30 pm-1:30 pm

…Read more.

Polyelectrolytes: A Field-Theoretic Perspective – Yuri Popov Mon. October 15th, 2007
12:30 pm-1:30 pm

Field-theoretic methods are not new to polymer physics. Their basic idea is to replace the particle-based description of the polymer in terms “monomers” or “beads” with a description in terms of collective variables, or fields (e.g. …Read more.

“Spinning” and “twisting” a light beam and other wavefront-shaping tricks performed with suitably patterned liquid crystals – Lorenzo Marrucci Thu. October 11th, 2007
12:30 pm-1:30 pm

The so-called “helical modes” of an electromagnetic wave are characterized by a helical shape of the wavefront. They carry quantized angular momentum of an orbital kind, as opposed to the spin-like angular momentum that can be associated with circularly polarized waves. …Read more.

Disorder, Interactions, and Crossovers in Quantum Dots – Ganpathy Murthy Mon. October 8th, 2007
12:30 pm-1:30 pm

In ballistic/chaotic quantum dots the single-particle states are controlled by Random Matrix Theory below the Thouless scale. The three pure Random Matrix ensembles correspond to dots without an orbital B field and no spin- orbit coupling (Orthogonal), dots without an orbital field and with spin-orbit coupling (Symplectic), and dots with an orbital field (Unitary). …Read more.

Looking for the Spin Hall Effect in all the Wrong Places – Nitin Samarth Mon. October 1st, 2007
12:30 pm-1:30 pm

The spin and anomalous Hall effects are related phenomena that arise from spin-dependent electrical transport in solids in the presence of spin-orbit coupling. Conventional wisdom has motivated many experimental studies of these effects in systems where spin-orbit coupling effects are inherently strong. …Read more.

Defect structures in nematic liquid crystal shells – Alberto Fernandez-Nieves Mon. September 24th, 2007
12:30 pm-1:30 pm

We use double emulstions drops to experimentally realize a system to investigate the defect structure in spherical shells of nematic liquid crystal. The ground state of this system is predicted to exhibit a tetrahedral arrangement of four surface defects in a structure reminiscent of a baseball. …Read more.

Frustration Phenomena in Liquid Crystals in Contact with Patterned Substrates – Tim Atherton Mon. September 17th, 2007
12:30 pm-1:30 pm

Recent experimental advances in fabricating micropatterned surfaces offer the display industry the possibility of constructing new types of display with such desirable properties as bistability, enhanced contrast ratio and reduced power consumption. …Read more.

Elasticity of Polymer Gels (and a Cytoskeleton in the Closet) – Gavin Buxton Mon. September 10th, 2007
12:30 pm-1:30 pm

Using computer simulations we can investigate the elastic properties of random elastic networks of struts. As the connectivity of the network increases a transition is observed between systems which deform through the bending of the struts to systems which deform through the stretching of the struts. …Read more.

Odd circuits: stability and jamming in hard granular materials – Nicolas Rivier Mon. May 21st, 2007
12:30 pm-1:30 pm

A dry granular material is modelled as a graph of spherical grains linked by purely repulsive contacts. Its stability (jamming) is insured by odd circuits that prevent the grains from rolling on each other. …Read more.

Some problems in the non-linear optics of liquid crystals – Tim Sluckin Mon. April 30th, 2007
12:30 pm-1:30 pm

…Read more.

Michelson Postdoctoral Lecture – Adam Bolton Mon. April 30th, 2007
12:30 pm-1:30 pm

…Read more.

ACES seminar: Molecularly Engineered Interfaces for Organic Optoelectronics – Zakya Kafafi Mon. April 23rd, 2007
12:30 pm-1:30 pm

…Read more.

Ongoing Mysteries in Astrophysics – Donald Driscoll Wed. April 11th, 2007
12:30 pm-1:30 pm

We are at the brink of a Golden Age of Astrophysics with the promise of answers to many long-outstanding questions, including: What is the nature of Dark Matter?What source powers Active Galactic Nuclei?Where do Gamma-Ray Bursts come from?Where do the highest energy Cosmic Rays come from? …Read more.

Bioinspired molecular optoelectronics – Volodimyr Duzhko Fri. April 6th, 2007
12:30 pm-1:30 pm

The versatility and rich functionality of living cells in Nature inspire researchers from many disciplines. For example, artificial replication of photosynthesis, which is an efficient solar-to-chemical energy conversion process in plants, promises a breakthrough in reducing our dependence on exhaustible and environmentally harmful fossil energy sources. …Read more.

New avenues to computational technology: novel spin transport effects at the nanoscale – Ewelina Hankiewicz Mon. April 2nd, 2007
12:30 pm-1:30 pm

The exponential increase of computational speed over time through miniaturization, known as Moore’s law, is now a thing of the past. This increase in speed is no longer due to our ability to make smaller devices, but in the control of heat dissipation. …Read more.

From nano to micro: hierarchical ordering at the nanoscale – Ezekiel Johnston-Halperin Mon. March 19th, 2007
12:30 pm-1:30 pm

The overall goal of controlling structural and electronic materials properties at nanometer length scales can be thought of as the intersection of two distinct but correlated challenges. The first is the synthesis/fabrication of individual nanoscale structures and the second is the arrangement of those structures into tailored nano- and micro-scale assemblies. …Read more.

Current, maximum power and optimized efficiency of Brownian heat engine – Mulugeta Bekele Fri. March 2nd, 2007
12:30 pm-1:30 pm

A tiny heat engine is modeled as a Brownian particle in a sawtooth potential (with or without load) moving through a highly viscous medium driven by the thermal kick it gets from alternately placed hot and cold heat reservoirs. …Read more.

Unraveling Electronic and Spin Structure with Photoemission – Oleg Krupin Mon. February 26th, 2007
12:30 pm-1:30 pm

Angle-resolved photoemission is widely recognized as a versatile tool for studies of the electronic structure and Fermi surface topology of new structures and materials with electronic and magnetic properties potentially interesting for modern electronics and future spintronics applications. …Read more.

Electrical Transport in Individual Nanostructures – Zhixian Zhou Tue. February 20th, 2007
12:30 pm-1:30 pm

Understanding the fundamental physical properties of individual nano scale materials is an essential and fundamental part of the research in nanoscience, since these nanostructures are not only potential building blocks of nanotechnology but also provide unique opportunities for studying a wealth of quantum mechanical phenomena. …Read more.

Ultrafast non-equilibrium phenomena of the integer quantum Hall system – Keshav Dani Mon. February 19th, 2007
12:30 pm-1:30 pm

The non-equilibrium properties of a system are typically understood by assuming instantaneous scattering between particles. However, for very early (femtosecond) timescales, one sees that the interactions are not instantaneous. They are instead the quantum interference of particle wavefunctions which last for a finite duration in time. …Read more.

Heisenberg’s XY model and the Development of Mammalian Visual Cortex – Peter Thomas Mon. February 12th, 2007
12:30 pm-1:30 pm

The architecture of the primary visual cortex, the first cortical area devoted to processing visual information, exhibits fascinating spatial organization. Individual nerve cells in this area are strongly tuned to respond to specific orientations (edges, contours, line segments) in the visual field. …Read more.

Engineering Defect Dynamics in Liquid Crystal Cells – Rolfe Petschek Mon. February 5th, 2007
12:30 pm-1:30 pm

Defects and slow dynamics of defects in a type of liquid crystal cell that allows the manufacture of wide-viewing angle flat panel liquid crystal displays is a very significant problem or “deal breaker”. …Read more.

Transition metal and rare-earth nitrides: a new route to magnetic semiconductors – Walter Lambrecht Mon. January 29th, 2007
12:30 pm-1:30 pm

Transition metal and rare-earth nitrides have both potential as magnetic semiconductors. I will present two case studies: Mn-doped ScN, which, unfortunately, might be a spinglass instead of a ferromagnetic semiconductor, and Gd-doped GaN, which was claimed to have COLOSSAL magnetic moments. …Read more.

Nonlinear Optics in Multilayer Polymer Films – Kenneth Singer Mon. November 27th, 2006
12:30 pm-1:30 pm

Case Western was recently awarded a National Science Foundation Science and Technology Center. This 5 year ~$20M once renewable grant is housed in the Department of Macromolecular Science and Engineering and is named the Center for Layered Polymer Systems (CLiPS). …Read more.

Terahertz spectroscopy of InMnAs – Jason Deibel Mon. November 13th, 2006
12:30 pm-1:30 pm

Diluted magnetic semiconductors (DMS’s) based on III-V semiconductors such as GaAs and InAs have drawn considerable interest over the past two decades as possible materials for use in spintronic devices. These are devices in which both the charge and spin of the electron are exploited. …Read more.

Semiconductor Spintronics – Igor Zutic Mon. November 6th, 2006
12:30 pm-1:30 pm

Spin-polarized transport and the related field of spintronics [1] rely on lifting of spin degeneracy in various physical properties. A different behavior for “spin up” and “spin down” in metallic magnetic structures has been shown to lead to large magnetoresistive effects which were successfully applied to computer hard drives and nonvolatile magnetic random access memory. …Read more.

Fabrication and Characterization of Functional Nanostructures and Applications – Richard Mu Mon. October 30th, 2006
12:30 pm-1:30 pm

My talk may consist of two folds. First, I would like to take this unique opportunity to give a brief introduction of Fisk University, and research and educational activities in general. …Read more.

Is the Adiabatic approximation Inconsistent? – Solomon Duki Mon. October 23rd, 2006
12:30 pm-1:30 pm

The adiabatic theorem is the basis of an approximation scheme that was discovered at the dawn of quantum mechanics and that has been in widespread and continuous use ever since. Applications range from two-level systems (such as nuclei undergoing magnetic resonance or atoms interacting resonantly with a laser field) to quantum field theory (where a low-energy effective theory is derived by integrating out fast, high-energy degrees of freedom). …Read more.

X-Ray Emission and Resonant Inelastic X-ray Scattering: new probes of electronic structure in complex materials – Kevin Smith Mon. October 16th, 2006
12:30 pm-1:30 pm

Detailed electronic structure measurements are required in order to fully understand many physical phenomena in solids. While photoemission spectroscopy is often the electronic structure probe of choice, there are many sample and environmental constraints that must be satisfied before meaningful data can be obtained with this spectroscopy. …Read more.

Solution Processable Organic Photovoltaics – Sean Shaheen Mon. October 9th, 2006
12:30 pm-1:30 pm

Organic photovoltaics (OPV) have demonstrated power conversion efficiencies under AM1.5 illumination of 5%, a value high enough to attract attention from industry and national laboratory researchers. I will discuss issues in the photophysics, charge transport, molecular morphology and band structure that limit current devices and discuss new materials and device approaches that may yield higher efficiencies. …Read more.

Electromechanical coupling effects in semiconductor heterostructures – Lok C. Lew Yan Voon Mon. October 2nd, 2006
12:30 pm-1:30 pm

Electromechanical coupling effects are known to significantly impact the physical properties of wurtzite (nitrides, ZnO, …) semiconductor nanostructure devices. However, there has not been to date a systematic study of the fully-coupled multiphysics problem and there are discrepancies within and between experimental and theoretical studies. …Read more.

Simulating non-equilibrium processes over extended time and length scales using parallel kinetic Monte Carlo and parallel accelerated dynamics – Jacques Amar Tue. September 26th, 2006
12:30 pm-1:30 pm

A long-standing obstacle to the understanding of non-equilibrium processes in condensed-phase systems is that many important processes occur on time-scales that are not easily accessible with conventional methods such as molecular dynamics. …Read more.

Expulsion of bend from a smectic liquid crystal: Anology to a type-I superconductor – Ruiting Wang Mon. September 18th, 2006
12:30 pm-1:30 pm

Using an atomic force microscope to nanopattern a substrate for liquid crystal alignment, a bend distortion is imposed on a liquid crystal. In regions of large bend the smectic-A phase melts into the nematic phase, and the width of the melted region is measured as a function of temperature. …Read more.

Suppression of superconductivity in the Hubbard model at intermediate coupling by buckling and breathing phonons – Mark Jarrell Mon. September 11th, 2006
12:30 pm-1:30 pm

Recent quantum Monte Carlo Dynamical Cluster calculations show that the Hubbard model displays superconductivity at temperatures relevant to the cuprate high temperature superconductors [1] suggesting that spin fluctuations may be responsible for superconductivity in these materials [2]. …Read more.

Michelson Postdoctoral Prize Lecture – Nicole Bell Mon. May 1st, 2006
12:30 pm-1:30 pm

Astrophysical Neutrinos: Revealing Neutrino Properties at the Highest Energies …Read more.

Phonon Anharmonicity and Phase Transitions in Bulk and Nanoparticle ZnSe under High Pressure – Bernard Weinstein Mon. April 24th, 2006
12:30 pm-1:30 pm

Resonant multi-phonon interactions strongly modify the life-times of the TO(Gamma) and LO(Gamma) normal modes in many bulk semiconductors.[1] The optically active confined and surface/interface modes in nanoparticles[2] are subject to enhanced anharmonic coupling because of the loss of q-conservation, the mixing of LO and TO polarities, and the presence of surfactant. …Read more.

The structure of a vortex and critical current through the BCS-BEC crossover – Mohit Randeria Mon. April 10th, 2006
12:30 pm-1:30 pm

Recently, there has been dramatic progress in experimental studies of the BCS-BEC crossover in trapped atomic Fermi gases. In this talk I will begin with a brief overview of the field and comparison of experiments and theory. …Read more.

Fractional vortices and composite domain walls in nanomagnets – Oleg Tchernyshyvov Mon. April 3rd, 2006
12:30 pm-1:30 pm

We provide a simple explanation of complex magnetic patterns observed in ferromagnetic nanostructures. To this end we identify elementary topological defects in the field of magnetization: ordinary vortices in the bulk and vortices with half-integer winding numbers confined to the edge. …Read more.

Molecular Imaging with Ultrafast Electron Diffraction – Chong-Yu Ruan Mon. March 27th, 2006
12:30 pm-1:30 pm

Ultrafast molecular imaging represents an emerging frontier.In particular, recent developments in the ultrafast electron diffraction (UED) have demonstrated the ability to image the rearrangements of chemical bonds in complex systems with resolutions of ~0.01A and ~1 ps, respectively. …Read more.

Treading a Fine Line: One-Dimensional Semiconductor Physics in Carbon Nanotubes – Michael Fuhrer Mon. March 20th, 2006
12:30 pm-1:30 pm

The growth of individual, long (> 1 mm), high-quality single- or few-walled carbon nanotubes (CNTs) on substrates by chemical vapor deposition has allowed the careful study of the intrinsic electronic properties of this material. …Read more.

Electron Interactions and Phase Coherence in Metals – Norman Birge Mon. March 6th, 2006
12:30 pm-1:30 pm

At low temperatures, conduction electrons in disordered metals maintain quantum phase coherence over times often exceeding one nanosecond — several orders of magnitude longer than the time between elastic collisions. Phase coherence is broken by inelastic collisions, which also relax the energy distribution of the electrons toward thermal equilibrium. …Read more.

Point defects in ZnGeP2 – Walter Lambrecht Mon. February 27th, 2006
12:30 pm-1:30 pm

ZnGeP2 is a semiconductor material used in nonlinear optical frequency conversion. To advance these applications it is necessary to gain a better understanding of the native point defects in this material. …Read more.

The determination Liquid Crystal Device parameters by means of renormalized transmission spectroscopic ellipsometry – Munehiro Kimura Mon. February 20th, 2006
12:30 pm-1:30 pm

…Read more.

Experiments with New Soft Solids – Patrick Mather Mon. February 13th, 2006
12:30 pm-1:30 pm

The design and synthesis of soft polymeric materials with tailored properties is an area of emphasis in our group. This talk will focus on two unique materials, covering synthesis through properties, revealing structure property relationships as we now understand them. …Read more.

Frontiers in spectroscopy with the scanning tunneling microscope – Jay Gupta Mon. February 6th, 2006
12:30 pm-1:30 pm

The scanning tunneling microscope is a versatile tool to study nanoscale structures with atomic resolution through a combination of manipulation and spectroscopic capabilities. By a process of inelastic scattering, tunneling electrons can probe vibrational, configuration and spin-flip excitations with single-atom sensitivity at low temperatures (T less than 5K). …Read more.

Electronic Properties of InSb Quantum Wells and Mesoscopic Structures – Michael Santos Mon. January 30th, 2006
12:30 pm-1:30 pm

In narrow-gap semiconductors, electrons have properties that are much different than in free space. For example, the effective mass in InSb is nearly two orders of magnitude smaller than the mass in free space. …Read more.

Oscillatory interlayer coupling in Co/Pt multilayers with perpendicular anisotropy – Fengyuan Yang Mon. December 5th, 2005
12:30 pm-1:30 pm

…Read more.

Quantitative modeling of single-molecule RNA force-extension experiments – R. Bundschuh Mon. November 28th, 2005
12:30 pm-1:30 pm

Single-molecule force-extension experiments are an emerging tool for the study of biomolecules. For a molecule like RNA that has to fold into a specific structure in order to perform its biological function a crucial question is if such experiments can reveal this structure. …Read more.

Between gases and liquids: the paradoxes of near-critical fluidsdynamics – Pierre Carles Mon. November 21st, 2005
12:30 pm-1:30 pm

The thermophysical properties of fluids near their liquid-vapor critical point are governed by universal critical phenomena, formalized theoretically after the works of Kaddanoff, Widom and Wilson in the early seventies and afterwards. …Read more.

Low-dimensional Transport in Nanoscaled Materials – Philip Kim Mon. November 7th, 2005
12:30 pm-1:30 pm

The use of modern state-of-the-art device fabrication techniques and the development of new methods of nanosclae material synthesis/manipulation enable us to investigate at the mesoscopic scales. In these length scales the nanoscaled materials have exhibited a variety of unique physical phenomena due to the enhanced quantum confinement of electrons in reduced dimensions. …Read more.

Mid-infrared Hall effect in ferromagnetic oxides and semiconductors – John Cerne Mon. October 31st, 2005
12:30 pm-1:30 pm

Strongly correlated materials ranging from diluted magnetic semiconductors (DMS) to transition-metal oxides, such as ruthenate perovskite (RP) compounds and high temperature superconductor cuprates, are revolutionizing fundamental concepts in condensed matter physics and show great potential for applications to spin-based electronics and multifunctional devices. …Read more.

Cell signalling Biophysics of GTPase-protein interactions: an overview of ideas and ongoing activities – Matthias Buck Mon. September 26th, 2005
12:30 pm-1:30 pm

…Read more.

ZIP-ping for Dark Matter – Michael Dragowsky Mon. September 19th, 2005
12:30 pm-1:30 pm

Astrophysical evidence has long implied the existence of non-luminous matter on the scale of galaxies. In the last few years experimental cosmology has emerged as a precision science, providing further evidence for non-luminous matter on extragalactic distance scales. …Read more.

Ground- and Excited-State Attributes of Hexanuclear Rhenium(III) Chalcogenide Clusters – Thomas Gray Mon. September 12th, 2005
12:30 pm-1:30 pm

…Read more.

Michelson Postdoctoral Prize Lecture – Yaroslav Tserkovnyak Mon. May 9th, 2005
12:30 pm-1:30 pm

Lecture 1: SPONTANEOUSLY-SYMMETRY-BROKEN ARCHIMEDES SCREWS: In the first technical lecture, I will use the tool box developed in treating time-dependent magnetoelectronic problems to consider a more general class of nonequilibrium phenomena in heterostructures with arbitrary spontaneous symmetry breaking. …Read more.

Monte Carlo simulations of inhomogeneous order in nematic liquid crystal cells: optical applications – Antoni C. Mitus Tue. May 3rd, 2005
12:30 pm-1:30 pm

We will present the results of Monte Carlo simulations of nematic liquid crystals described by Lebwohl-Lasher-Rapini model. Detailed information on local order makes possible a calculation of diffractive index in case of inhomogeneous NLC order due to inhomogeneous electric field on the surface, resulting from laser illumination. …Read more.

Forces on Small Scales – Liwei Chen Mon. April 25th, 2005
12:30 pm-1:30 pm

Atomic Force Microscopy (AFM) has become an indispensable tool in nanoscience and nanotechnology. In this talk, I will not only show routine application of topographical imaging with nanometer resolution, but also demonstrate further studies that benefit from quantitative measurements of small forces. …Read more.

Scanned Probe Magnetic Resonance: The Magnetic Resonance Force Microscope – Chris Hammel Mon. April 18th, 2005
12:30 pm-1:30 pm

…Read more.

Focused laser beams and liquid crystals: Three-dimensional imaging and control of topological defects and measurements of colloidal interactions – Oleg Lavrentovich Mon. April 11th, 2005
12:30 pm-1:30 pm

Orientational order is a universal feature of numerous soft-matter systems, most notably liquid crystals. These systems are extremely flexible, producing a rich variety of complex 3D patterns of order parameter. Non-destructive techniques to study and control these patterns are in a great demand. …Read more.

Spin separation in cyclotron motion – Leonid Rokhinson Mon. April 4th, 2005
12:30 pm-1:30 pm

The ability to manipulate spin of charge carries in a controllable fashion is central to the rapidly developing field of spintronics, as well as for the development of spin-based devices for quantum information processing. …Read more.

Investigations of Light Harvesting and Enhanced Nonlinear Optical Properties in Organic Dendrimers and Branched Macromolecules – Theodore Goodson III Mon. March 28th, 2005
12:30 pm-1:30 pm

Organic conjugated macromolecules have received great attention due to their use in optical and electronic applications. Certain molecular aggregate systems have shown enhanced nonlinear optical properties by virtue of excitonic coupling in the multi-chromophore system. …Read more.

Correlations Stablize Blue Phases – Lech Longa Mon. February 28th, 2005
12:30 pm-1:30 pm

…Read more.

Magnetoresistance in Parallel Fields – Julia Meyer Mon. February 21st, 2005
12:30 pm-1:30 pm

In addition to its large scale in-plane properties, transport in (quasi) two-dimensional electron systems is sensitive to microscopic details in the transverse direction. An efficient tool to study the interplay between both is a parallel magnetic field, which probes the structure of wave functions perpendicular to the plane. …Read more.

Sensitive Detection of Radiation Trapping in a Cold Dilute Gas – Samir Bali Mon. February 14th, 2005
12:30 pm-1:30 pm

Radiation trapping in an illuminated gas of atoms refers to the reabsorption of spontaneously emitted photons. This reabsorption prevents the formation of colder denser atomic samples for quantum degenerate studies in ultracold trapped gases. …Read more.

Challenge of Public and Workforce Education in Nanotechnology: Science vs Science Fiction – David Smith Mon. February 7th, 2005
12:30 pm-1:30 pm

Dave will discuss nanotechnology education as a challenge in both the areas of public education in science (for the K-99 audience ) and as another battle of hype against reality; science fiction against science. …Read more.

First-principles investigations of p-type doping in ZnO – Sukit Limpijumnong Mon. December 6th, 2004
12:30 pm-1:30 pm

ZnO is one of the top candidates for blue light optoelectronics because of its wide bandgap properties. However, fabricating high quality p-type ZnO has proven to be difficult. While none of the group-I doping yields p-type behavior and Nitrogen doping shows only limited success, doping with larger group-V elements, which should cause high strain and has low solubility on the oxygen site, show some preliminary surprising success. …Read more.

Optical control in semiconductor dots for quantum operations – Duncan Steel Mon. November 29th, 2004
12:30 pm-1:30 pm

Semiconductor quantum dots have optical properties similar to simple atomic systems, unlike higher dimensional semiconductor structures that are dominated by manybody physics associated with the continuum states. They also provide a potentially ideal electronic structure appropriate for quantum computing. …Read more.

Entropy Applications to Engineering and Health Science – Miron Kaufman Mon. November 8th, 2004
12:30 pm-1:30 pm

I will describe two applications of entropy. The first one is relevant to mixing in polymer processing. The other one is relevant to developing a diagnostic tool for low back pain. …Read more.

Resonant charge carrier tunneling in nanocrystalline Si/amorphous SiO2 superlattices – Volodimyr Duzhko Mon. November 1st, 2004
12:30 pm-1:30 pm

Electronic transport and charge carrier trapping in the nanocrystalline Si/amorphous SiO2 superlattices were investigated by impedance spectroscopy, dc photoconductivity, and transient photocurrent measurements. The method for evaluation of the density of interface traps from the impedance spectroscopy measurements was developed to controll the quality of the superlattices. …Read more.

Exploring the terahertz region with a narrowband tunable source – Peter Powers Mon. October 25th, 2004
12:30 pm-1:30 pm

The generation of widely tunable coherent terahertz (THz) frequencies is of great interest for a variety of applications in basic and applied sciences. Broadband THz sources, particularly those based on femtosecond lasers, have already shown much promise in addressing these applications. …Read more.

Old Method, New Results: Ultra-High Mobility in a Simple Organic Crystalline Semiconductor – Brett Ellman Mon. October 11th, 2004
12:30 pm-1:30 pm

Devices based on organic semiconductors are a new, growing sector of the electronics market. For use as, e.g., field-effect transistors, a primary determinant of the utility of a material is the mobility, the proportionality coefficient between charge velocity and electric field. …Read more.

Coherent time-resolved vibrational spectroscopy of surfaces and interfaces – Alex V. Benderskii Mon. October 4th, 2004
12:30 pm-1:30 pm

Time- and frequency-domain 3-wave mixing spectroscopies (infrared + visible Sum Frequency Generation, SFG) are presented as the lowest-order nonlinear techniques that are both surface-selective and capable of measuring vibrational coherences. Application to ordered Langmuir-Blodgett monolayers shows vibrational quantum beats in time domain, which are connected to the frequency-domain spectrum by a simple Bloch-type model. …Read more.

The mystery of the thermotropic biaxial nematic phase – Satyen Kumar Mon. September 27th, 2004
12:30 pm-1:30 pm

The biaxial nematic phase was predicted more than three decades ago and discovered in lyotropic liquid crystalline systems by Yu and Saupe in 1980. However, several attempts to invent and synthesize new thermotropic materials likely to form this phase did not succeed. …Read more.

A Gas of Excitons: Moving and Trapping Electronic Quasi-Atoms – David Snoke Mon. September 20th, 2004
12:30 pm-1:30 pm

An exciton is bound state of a free, negatively charged electron and a postively charged hole in a semiconductor. Excitons act in many ways like hydrogen atoms which can move through a semiconductor and interact with each other much like a gas of atoms. …Read more.

Spin injection from ferromagnetic Fe contacts into GaAs/AlGaAs spin LEDs – Athos Petrou Mon. September 13th, 2004
12:30 pm-1:30 pm

Electron spin injection efficiencies up to 40% have been obtained in Fe/AlGaAs(n) Schottky barriers. The spin polarized electrons are collected by a GaAs well and recombine with unpolarized holes. The optical polarization of the emitted excitonic electroluminescence yields a direct measurement of the electron spin polarization in the well. …Read more.

Defect dynamics in nematic liquid crystals – Maurizio Nobili Thu. August 12th, 2004
12:30 pm-1:30 pm

…Read more.

Optical rectification and electro-optic sampling in the THz regime using electro-optic polymers – Michael Hayden Mon. May 10th, 2004
12:30 pm-1:30 pm

I will describe the adaptation of electro-optic (EO) polymer technology to terahertz (THz) generation and detection. The generation of wide bandwidth THz radiation (mid-IR to far-IR) with a smooth frequency response using low power laser sources is very desirable for scientific and technological applications such as vibrational analysis of biomolecules, medical imaging, non-contact electrical measurements, and homeland security. …Read more.

Evidence for Neutrino Oscillation and Massive Neutrinos: The Resolution of the Solar Neutrino Problem at SNO and KamLAND – Karsten Heeger, Michelson Postdoctoral Prize Lecture Mon. April 26th, 2004
12:30 pm-1:30 pm

Unambiguous evidence for novel neutrino properties has recently been obtained from observations of solar and reactor neutrinos. Combined with previous solar neutrino experiments the results from SNO and KamLAND are evidence for neutrino oscillation. …Read more.

Surface Structure Determination of a Diacetylene of Monomer and Polymer LB Monolayers by AFM as Compared to Electron Diffraction – J. B. Lando Mon. April 19th, 2004
12:30 pm-1:30 pm

Langmuir Blodget (LB) monolayer films of the lithium salt of 10,12-nonacosadiynoic acid monomer and polymer LB monolayers were studied by AFM and electron diffraction. The fast Fourier transform of the AFM image was compared to electron diffraction results. …Read more.

Quantum Criticality near Zero Temperature Phase Transitions – Meigan Aronson Mon. April 12th, 2004
12:30 pm-1:30 pm

It is possible to drive magnetic ordering temperatures in certain metallic magnets to zero temperature by means of applied field, pressure, or compositional variation. We have been using neutron scattering measurements to study the development of dynamic and spatial correlations near one such T=0 antiferromagnetic transition in the heavy fermion system CeRu2Ge2, doped with Fe. …Read more.

Magnetic interactions and properties of 3d-5d/4d nano-particles: exchange interactions mediated by non-magnetic metallic atoms – Oleg N. Mryasov Mon. April 5th, 2004
12:30 pm-1:30 pm

The search for technological solutions for ultra high density magnetic storage devices requires to achieve thermal stability and higher signal to noise ratio for dramatically decreasing media grain size and geometrical dimensions of the field sensing elements. …Read more.

Magnetic Resonance of Hyperpolarized Noble Gases – Jason C. Lea Woods Mon. March 1st, 2004
12:30 pm-1:30 pm

Laser polarization of 3He and 129Xe generates nuclear spin polarizations 100,000 times greater than Boltzmann equilibrium at 2 Tesla and 300 K. The advent of these hyperpolarized gases has led to a wealth of research and applications in atomic and materials physics, chemistry, and medicine. …Read more.

The Development of Optical Coherence Tomography at CASE and the Optical Related Bio-Images – Zhilin Hu Mon. February 23rd, 2004
12:30 pm-1:30 pm

The presentation is to draw a picture of Optical Coherence Tomography (OCT), which has tremendous applications in biomedical research and clinic disease diagnosis, with a great potential commercial market. The fundamental principle of the OCT is to use the theory of the coherent optics or the electromagnetic waves. …Read more.

Theory of electron tunneling in ultra-small aluminum grains – Gustavo A. Narvaez Mon. February 16th, 2004
12:30 pm-1:30 pm

The ongoing revolution in information technology drives advances in the ability to synthesize, manipulate, and probe nanometer-size materials. Among the new developments, single-quantum-level tunneling spectroscopy emerges as a powerful tool to study the electronic structure of individual metal nanograins. …Read more.

Structure and Dynamics of Interfaces in the MBE Growth on (110) and (100) Crystal Surfaces – Artem Lewandowsky Mon. February 2nd, 2004
12:30 pm-1:30 pm

The general phenomenology of multilayer epitaxial growth and erosion on square (001) and rectangular (110) symmetry crystal surfaces is discussed. Recently observed transitions between two kinds of ripple states on (110) surfaces are studied within a unified model. …Read more.

Electron Spin Manipulation in Semiconductor Nanostructures – Alexander Efros Mon. January 26th, 2004
12:30 pm-1:30 pm

Manipulating electron spin is one of the central problems in the growing field of semiconductor spintronics. This is of critical importance for quantum computing and information processing. Here I discuss the “optical initialization” and “optical read out” of the spin of an electron localized in a quantum dot [1]. …Read more.

Visualizing Functional Connections in the Brain with Magnetic Resonance Imaging – Shella Keilholz Mon. December 15th, 2003
12:30 pm-1:30 pm

Magnetic resonance imaging, widely utilized for obtaining excellent anatomical images of soft tissue, has increasingly been applied to the study of brain function. By manipulating image acquisition, information about parameters such as perfusion, diffusion, neural activity, blood volume, and blood oxygenation can be obtained. …Read more.

The use of antibodies coupled to quantum-dot filled microspheres – Maureen McEnery Mon. December 1st, 2003
12:30 pm-1:30 pm

…Read more.

On the Origin of Soft-Vibrational Modes in Glass-Forming Liquids – Ulrich Zurcher Mon. November 17th, 2003
12:30 pm-1:30 pm

When liquids are cooled rapidly, particles can no longer move freely and the liquid becomes a glass. Above the glass temperature Tg, relaxation in supercooled liquids obeys the Vogel-Fulcher law, τ ∼ exp[-E/(T-T0)] with T0 < Tg. …Read more.

Level Statistics of Complex Systems: A Random Matrix Approach – Pragya Shukla Mon. November 10th, 2003
12:30 pm-1:30 pm

In general, the physical systems are quite complex in nature. Our approximate knowledge of the complicated interactions in these systems manifests itself by a randomization of various generators of the dynamics. …Read more.

Oxide-semiconductor materials for quantum computation – Jeremy Levy Mon. November 3rd, 2003
12:30 pm-1:30 pm

I will describe the goals and activities of our Center for Oxide-Semiconductor Materials for Quantum Computation (COSMQC, http://cosmqc.net). In our proposed architecture, quantum information is stored in electron spins, which form the basis for qubits. …Read more.

Counting electrons on helium with a single electron transistor – Mike Lea Mon. October 27th, 2003
12:30 pm-1:30 pm

Electrons on liquid helium have been proposed as qubits [1], using excited Rydberg states [2] as the |0> and |1> quantum states. This requires the trapping of single electrons in quantum wells, the excitation of Rydberg states using millimetric microwaves and the detection of the quantum states of the electrons. …Read more.

Is there a finite temperature phase transitions in bilayer quantum Hall system ? – Jinwu Ye Mon. October 20th, 2003
12:30 pm-1:30 pm

A Mutual Composite Fermion (MCF) picture is proposed to explain the interlayer coherent incompressible phase in bilayer Quantum Hall systems at total filling factor νT=ν1+ν2 =1. There are gapped quasi-particles (QP) and quasi-holes (QH) excitations with total fractional charges ±ν1 and ±ν2. …Read more.

Structure and Properties of Narrow Gap Nitride Films – Rachel Goldman Mon. October 13th, 2003
12:30 pm-1:30 pm

Narrow gap nitride semiconductors have shown significant promise for a wide range of applications, including long-wavelength light-emitters, high performance electronic devices, and high efficiency solar cells. In the case of GaAsN, a consequence of the large N-As size difference is a predicted limited miscibility on the anion sublattice, which often leads to the formation of GaN-rich nanostructures [1-2]. …Read more.

Exploiting self-assembly to create polar organic thin films with piezoelectric, pyroelectric, and second order nonlinear optical response – Daniel Dyer Wed. September 17th, 2003
12:30 pm-1:30 pm

…Read more.

Magnetic interactions in metallic anti-ferromagnetic manganese nitride compounds – Walter Lambrecht Mon. September 8th, 2003
12:30 pm-1:30 pm

Electronic structure calculations are used to study the magnetic properties of MnN and Mn3N2. The magnetic moments originate primarily from the Mn t2g orbitals and are in good agreement with neutron diffraction measurements. …Read more.

Dynamic Anchoring of Liquid Crystals: Path to New Applications – Lachezar Komitov Mon. June 2nd, 2003
12:30 pm-1:30 pm

Liquid crystals are widely used as electro-optic active media in display devices. The alignment of the liquid crystal molecules is crucial for the operation of liquid crystal displays. In field-free conditions, the liquid crystal alignment is essentially governed by the surface/liquid crystal interactions. …Read more.

Electron-Accepting Molecules and Polymers: Theoretical Insights – Douglas Dudis Mon. May 5th, 2003
12:30 pm-1:30 pm

Conjugated molecules and polymers are of intense interest because of their novel electronic, linear and nonlinear optical, electrochemical and biological properties. Technologies benefiting from these materials include photovoltaics, batteries, capacitors, molecular electronics, electrochromics and light emitters among others. …Read more.

Quantum Information Processing using Atomic and Optical Systems – Brian DeMarco Mon. April 28th, 2003
12:30 pm-1:30 pm

Quantum information processing is a rapidly emerging field, with development in atomic, photonic, and condensed matter systems underway. Classical computers (the standard computers of today) are inherently limited by memory storage and computational ability. …Read more.

Conductance of molecular nanojunctions – Nikolai Zhitenev Mon. April 21st, 2003
12:30 pm-1:30 pm

Using molecules as possible elements for electronic devices has an enormous appeal. In the size hierarchy of nature, molecules stand just above atoms making them ideal ultimate choice for ever-shrinking electronic devices. …Read more.

Swimming towards the dark: a photophobic light-driven elastomeric swimmer – Peter Palffy Mon. April 14th, 2003
12:30 pm-1:30 pm

Liquid crystal elastomers are characterized by strong coupling between orientational order and mechanical strain; optical excitations that result in a change of the order parameter can therefore bring about large mechanical deformations. …Read more.

What causes magnetization relaxation in ferromagnetic transition metals? – Snorri Ingvarsson Wed. March 26th, 2003
12:30 pm-1:30 pm

Much like resistance is to an electric circuit, magnetization relaxation is what restores the magnetization of a ferromagnet to equilibrium when the external stimulus (magnetic field) becomes quiescent. The mathematical equation governing magnetization dynamics in ferromagnets is the Landau-Lifshitz equation, where magnetization relaxation is usually taken into account as a phenomenological damping constant (Gilbert damping). …Read more.

Modulation of Membrane Electrogenic Transport. The Role of Charge-Dipole Coupling – Eitan Gross Tue. March 25th, 2003
12:30 pm-1:30 pm

The behavior of a given ion channel can be different in different regions of a cell. For example, Na+ channels in the axons of nerve cells inactivate much faster then in the cell body (soma). …Read more.

Electronic polarization in organic molecules and molecular solids: classical interactions between quantum systems – Eugene Tsiper Mon. March 10th, 2003
12:30 pm-1:30 pm

Electronic structure of molecular solids is strikingly different from the conventional inorganic semiconductors, such as Si. Coulomb interactions between molecules in van der Waals contact, narrow bandwidths and localized nature of charges make electronic polarization a major effect, with energy scale greater than transfer integrals or temperature. …Read more.

An Atomic Abacus: Trapped ion quantum computing experiments at NIST – Brian DeMarco Mon. February 24th, 2003
12:30 pm-1:30 pm

Trapped atomic ions are an ideal system for exploring quantum information scienc e because deterministic state preparation and efficient state detection are poss ible and coherent manipulation of atomic systems is relatively advanced. …Read more.

Torsion and stiffening of multi-walled carbon nanotubes – Stergios Papadakis Tue. February 18th, 2003
12:30 pm-1:30 pm

I will describe the fabrication and characterization of nanometer-scale electromechanical oscillator devices which use multi-walled carbon nanotubes as the spring elements. Through atomic-force-microscope force-distance measurements we are able to apply torsional strains to the nanotubes and measure their torsional spring constants and effective shear moduli. …Read more.

Magnetic Properties of YCo5 and SmCo5 – Paul Larson Mon. February 10th, 2003
12:30 pm-1:30 pm

SmCo5 is one of the most important hard magnetic materials, having large magnetic moments and large out of plane magnetic anisotropy energy (MAE). We have calculated and analyzed the magnetic properties of the related compounds YCo5 and SmCo5 using first-principles LAPW calculations including LDA+U. …Read more.

Order at soft-hard interfaces – Pulak Dutta Mon. January 27th, 2003
12:30 pm-1:30 pm

The ordering of soft materials at hard surfaces is by now a familiar process, but the nucleation of hard materials at soft templates is also common in nature (‘biomineralization’). This talk will describe in situ X-ray scattering studies of both types of interfacial phenomena: the ordering of molecular liquids near hard surfaces, and the epitaxial growth of inorganic crystals under floating (Langmuir) monolayers. …Read more.

Graduating Senior Project Presentations Mon. December 2nd, 2002
12:30 pm-1:30 pm

Benjamin Bayat, Volume Logic Diagnostics on Microprocessor and ASICs Chips at IBM
Andrew D. Huss, Integration of Sensor Technology for Mini-WHEGS Robot
Cameron K. McBride, The Propagation of Light and Gravity through Matter-filled Spacetime with Stabilized Compactified Extra Dimensions
Sharon R. …Read more.

Gapped Sequences Alignment, Statistical Significance, and Biomolecular Interactions – Yi-Kuo Yu Mon. November 25th, 2002
12:30 pm-1:30 pm

By comparing the bio-sequences deposited in databases, sequence alignment tools pull out sequences of potential functional similarity to the query. To quantify the significance of the found sequences, one usually ask their associated p-values — how probable it is that a completely irrelevant sequence might be pulled out “by accident”. …Read more.

Diluted magnetic semiconductors based on the layered A2VB3VI compounds – Jeff S. Dyck Mon. November 18th, 2002
12:30 pm-1:30 pm

Currently, there is a great deal of research activity on the incorporation of magnetic ions into semiconductors to produce ferromagnetism. These diluted magnetic semiconductors (DMSs) are of interest both to theorists, because of their unusual mechanisms of magnetic behavior, and to experimentalists, because the manipulation of spin in addition to charge promises devices based on spin polarized transport. …Read more.

Mixed Valence Regime of the Periodic Anderson Model: the proper paradigm for the magnetic properties of f-electron materials? – James E. Gubernatis Mon. November 11th, 2002
12:30 pm-1:30 pm

The f-electron materials (lanthanides and actinides) exhibit a rich array of strongly correlated electron phenomena. Most notable are their anti-ferromagnetism and frequent heavy fermion behaviors. They are generally mixed valence materials. …Read more.

Novel Materials Properties from Reversibly Associated Polymers – Elena Dormidontova Mon. November 4th, 2002
12:30 pm-1:30 pm

In contrast to chemically bonded polymers, reversibly associated polymers (e.g. via hydrogen bonding) have the capability to reversibly change their chain architecture by responding to changes of external conditions. Blends of associating polymers of different chemical structure are capable of self-organization on both micro- and macroscopic level. …Read more.

Functional Polymer Design: Creating Polymer Materials with Tailored Properties – Christoph Weder Mon. October 28th, 2002
12:30 pm-1:30 pm

Motivated by the persistent desire for (novel) materials, which exhibit currently unavailable functionalities, research focused on the creation of polymers with tailored properties has evolved to a central field at the interface of chemistry, materials science, and physics. …Read more.

Dislocations in silicon and diamond – Malcolm I. Heggie Tue. October 22nd, 2002
12:30 pm-1:30 pm

The study of dislocation core structures from first principles has flourished in the decade since the first calculation which confirmed reconstruction of the single period core of the 90o partial in silicon [1]. …Read more.

Atomic Clocks – Kurt Gibble Mon. October 14th, 2002
12:30 pm-1:30 pm

…Read more.

Mechanism of the high-pressure phase transitions from tetrahedrally bonded semiconductors to rocksalt – Maosheng Miao Mon. October 7th, 2002
12:30 pm-1:30 pm

A uniform description is presented for the transition paths of various tetrahedrally bonded semiconductor structures, including wurtzite, zind blende and various SiC polytypes, to the high-pressure rocksalt phase. The enthalpy barriers for these strain induced transitions were calculated from first-principles. …Read more.

The Materials Machine – Daniel Gall Mon. September 30th, 2002
12:30 pm-1:30 pm

An ongoing challenge in materials physics is to arrange atoms in a controlled manner in order to design materials with the desired physical properties. This can be achieved by developing (1) synthesis methods which control the nanometer scale arrangement of the constituent atoms and (2) tools that predict materials properties solely from their elemental composition and nanostructure. …Read more.

Electronic Structure Calculations with Dynamical Mean-Field Theory – Sergej Savrasov Mon. September 23rd, 2002
12:30 pm-1:30 pm

An effort to build a new electronic structure method based on many-body dynamical mean-field theory as an alternative to density functional theory will be reviewed. Several applications of this method to study total energies and photoemission spectra in various phases of plutonium, phonons in Mott Insulators, as well as optical spectra in doped titanites will be discussed. …Read more.

Transport of Spin in Multilayer Films – Mark Stiles Mon. September 16th, 2002
12:30 pm-1:30 pm

The resistance of certain magnetic multilayers decreases by a factor of two with the application of a magnetic field. The discovery of this so-called giant magnetoresistance effect has led to an explosion in research in magnetic multilayers. …Read more.

Fluorescence confocal polarizing microscopy – a new method for 3D imaging of a director field in liquid crystals – Sergij Shiyanovskii Mon. September 9th, 2002
12:30 pm-1:30 pm

Most of traditional optical methods, e.g. polarizing optical microscopy, provide 2D images as a result of the integration over a vertical direction. We have developed a new fluorescence confocal polarizing microscopy (FCPM) technique, which allows one to visualize 3D patterns of the director field in liquid crystals (LCs). …Read more.


Page last modified: July 13, 2016