Event  Date and Location  Summary 
Steve Benton (Princeton)  Tue. September 17th, 2024 11:30 am12:30 pm at Rock 221 Foldy room 
TBA 
Alice Garoffolo (UPenn)  Tue. October 15th, 2024 11:30 am12:30 pm at Rock 221 Foldy room 
TBA 
Nathaniel Starkman (MIT)  Tue. November 5th, 2024 11:30 am12:30 pm at Foldy Room, Rock 221 
TBA 
Event  Date  Summary 
Latham Boyle (University of Edinburgh)  Tue. April 23rd, 2024 11:30 am12:30 pm 
The Penrose tiling is a quantum error correcting code Abstract: I will begin by introducing Penrose tilings (“PTs”) and quantum error correcting codes (“QECCs”). A PT is a remarkable, intrinsically nonperiodic way of tiling the plane whose many beautiful and unexpected properties have fascinated physicists, mathematicians, and geometry lovers of all sorts, ever since its discovery in the 1970s. A QECC is a fundamental way of protecting quantum information from noise, by encoding the information with a sophisticated type of redundancy. Such codes play an increasingly important role in physics: in quantum computing (where they protect the delicate quantum state of the computer); 
Victor Miralles (U Manchester)  Tue. April 16th, 2024 11:30 am12:30 pm 
Introduction to HEPfit and its potential to constrain the SMEFT 
Doug Cowen (Penn State)  Wed. April 3rd, 2024 1:30 pm2:30 pm 
Astrophysical Tau Neutrinos
Neutrinos are very reticent fundamental particles. Tau neutrinos make electron and muon neutrinos look Host: Benjamin Monreal

Samuel Patrone (Caltech)  Tue. April 2nd, 2024 11:30 am12:30 pm 
Exploring the Renormalization of the Galaxy Bias Expansion The galaxy bias expansion links the galaxy overdensity field to the matter overdensity field δρ. In my talk, I will review the theoretical machinery that allows us to connect the primordial curvature fluctuations to the largescale structures of the Universe, and I will present the results of 2306.08025. In this work, we performed the oneloop renormalization of the composite operator δρ², up to third order in gravitational evolution and in the presence of local nongaussianities, using three distinct regularization schemes. I’ll show how this choice impacts the values of the counterterms, 
Amy Connolly (OSU)  Tue. March 19th, 2024 11:30 am12:30 pm 
Ultra high energy neutrino detection in Antarctic ice: an evolving story High energy astrophysics is now being probed using four different energetic messengers: (charged) cosmic rays, gamma rays, gravitational waves, and neutrinos. The past decade and a half has been marked by discoveries of gravitational waves and neutrinos up to O(10^16 eV). Neutrinos in the ultrahigh energy (UHE) regime (above 10^18 eV) are an important missing piece of the multimessenger picture of the high energy universe, and will also be important probes of new physics. Experiments using radio techniques in Antarctic ice are the most promising for the discovery of UHE neutrinos. 
Florian Kuhnel  Tue. February 27th, 2024 11:30 am12:30 pm 
(Cancelled) 
David Moore (Yale)  Tue. February 20th, 2024 11:30 am12:30 pm 
Mechanical sensors for dark matter and neutrinos The development of optomechanical systems has revolutionized the detection of tiny forces over the past few decades. As such technologies reach (and surpass) quantum measurement limits, they can enable new searches for weakly coupled phenomena, including dark matter, gravitational waves, “fifth’’ forces, and sterile neutrinos. As a demonstration of these techniques, I will describe an initial search for dark matter using an optically levitated nanogram mass sensor, which can exceed the sensitivity of even large underground detectors for certain classes of dark matter candidates in a few days of exposure. 
Fabio van Dissel, IFAE (Barcelona)  Tue. February 13th, 2024 11:30 am12:30 pm 
Multifield Wave Dark Matter 
Elias Most (Caltech)  Tue. February 6th, 2024 11:30 am12:30 pm 
Neutron Star Mergers: From gravity to nuclear and plasma astrophysics Announcing the dawn of a new era of multimessenger astrophysics, the gravitational wave event GW170817 – involving the collision of two neutron stars – was detected in 2017. In addition to the gravitational wave signal, it was accompanied by electromagnetic counterparts providing new windows into the different physics probed by the system. Since then, several gravitational wave events involving neutron stars have been discovered, with more expected over the next years. In order to understand and interpret the physics of these events, it is necessary to model the intricate dynamics of such systems before, 
Roshan Abraham (UC Irvine)  Tue. January 30th, 2024 11:30 am12:30 pm 
Neutrino Physics and Dark Matter Searches at the Forward Physics Facility at the LHC The recent observation of collider neutrinos by the FASER collaboration highlights the potential the forward direction at the LHC has for neutrino physics. In the HLLHC era, we expect a significant number of neutrinos in the forward direction, opening the way for precision studies using collider neutrinos at the proposed Forward Physics Facility (FPF). In this talk, I will present some phenomenological studies in this direction. i) The electromagnetic properties of neutrinos (magnetic moments, millicharge, charge radius) have attracted significant interest recently. 
Srini Raghunathan (UIUC)  Tue. November 28th, 2023 11:30 am12:30 pm 
SunyaevZeldovich Science with Current and Future CMB Surveys. 
Josh Klein (U Penn)  Tue. November 14th, 2023 11:30 am12:30 pm 
Hybrid Neutrino Detection and Spectral Photon Sorting with Dichroicons 
Joshua W Foster (MIT)  Tue. November 7th, 2023 11:30 am12:30 pm 
Simulating Stochastic Gravitational Waves from Early Structure Formation
Gravitational wave detectors provide a chance to observe the state of the very early universe and have important sensitivities for studies of early universe cosmology and searches for physics beyond the Standard Model. In this talk, I will discuss the production of potentially detectable stochastic gravitational wave backgrounds in early matter dominated eras in the linear and nonlinear regimes of structure formation. 
Luca Buoninfante (Nordita in Sweden)  Tue. October 31st, 2023 11:30 am12:30 pm 
Massless and Partially Massless Limits in Quadratic Gravity 
Sung Hak Lim (Rutgers)  Tue. October 17th, 2023 11:30 am12:30 pm 
Mapping Dark Matter in the Milky Way using Normalizing Flows and Gaia DR3 
Brian Keating (UCSD)  Fri. October 13th, 2023 12:45 pm1:45 pm 
Cosmological Claims That Cause Michelson & Morley Conniptions 
Abby Crites (Cornell)  Tue. October 3rd, 2023 11:30 am12:30 pm 
Probing the Structure and Evolution of Our Universe with Line Intensity Mapping with mmWavelength Instruments I will discuss line intensity mapping (LIM) and its applications for understanding cosmology and starformation across cosmic time. I will focus on TIME, a mmwavelength instrument designed to use LIM to probe the [CII] line at redshifts ~59 and the CO lines at redshifts ~0.52. The instrument is a grating spectrometer with transition edge sensors that is used on the Arizona Radio Observatory 12m. I will also briefly touch on other instruments and facilities (including the Fred Young Submillimeter Telescope) that will be used for LIM and the future of cosmology using this technique. 
Calvin Y Chen (Imperial College London)  Tue. September 26th, 2023 11:30 am12:30 pm 
A cautionary case of casual causality – Diagnosing (a)causality in the EFT of gravity In recent years, causality has emerged as a powerful criterion to distinguish between effective field theories (EFTs) arising from physical and unphysical highenergy theories. A direct way to ensure a given EFT is causal is to demand a lower bound on scattering time delays, which essentially imposes a speed limit averaged over the trajectory. In flat space, this is unambiguously dictated by the Minkowski light cones, but the situation is more subtle with dynamical gravity. I will make the case that the relevant notion is socalled infrared (IR) causality. 
Julia Gehrlein (CERN – MPPL 2023 Winner)  Tue. September 19th, 2023 11:30 am1:00 pm 
MPPL Lecture 2 – Who ordered that? Probing neutrino flavor models with precision neutrino experiments The observed flavor pattern of neutrinos, their large mixings and the smallness of their masses compared to the masses of the other fermions provides a great puzzle. In this talk I will review explanations to this puzzle based on symmetries and then focus on the predictions and testability of these flavor models. I will put a particular focus on the most predictive class of models which relate different observables with each other. I will show how upcoming neutrino experiments like oscillation experiments, 
David Grabovsky (UC Santa Barbara)  Tue. September 12th, 2023 11:30 am12:30 pm 
Heavy States in 3d Gravity and 2d CFT One way to learn about black holes and other heavy states in quantum gravity is to study their response to perturbations by light probe fields. In 3d gravity and holographic 2d CFTs, it is often possible to do this exactly. We consider the propagator of free scalar fields in AdS geometries with a conical defect or a BTZ black hole, dual on the boundary to a heavylight 4point function. In the bulk, the correlator can be computed by solving the equation of motion, as well as by the method of images. 
Deyan Mihaylov (CWRU)  Tue. September 5th, 2023 11:30 am12:30 pm 
Gravitational waves with astrometry in the Gaia era Gravitational waves have a periodic effect on the apparent positions of stars on the sky. This effect can be quantified and ultraprecise astrometric measurements (like the ones from Gaia) can be used as a new method to search for gravitational signals. I will describe the principles which give rise to the astrometric signature of gravitational waves, and examine this result in the context of Einsteinian and alternative polarization states. I will discuss some of the data analysis challenges that will have to be overcome when trying to search for GWs in the extremely large (>10^9 stars) Gaia data set, 
Latham Boyle (Perimeter)  Tue. April 11th, 2023 11:30 am12:30 pm 
What is the simplicity of the early universe trying to tell us? Our universe seems to be dominated by radiation at early times, and 
Greg Mathys (Cornell)  Tue. April 4th, 2023 11:30 am12:30 pm 
Gravity as a phase of matter I will discuss how generalized symmetries and their anomalies can be used to constrain lowenergy effective field theories (EFTs). In particular, I will present EFTs enjoying biform symmetries, which are a slight variation of higherform symmetries, and are defined by the presence of a conserved current that has the symmetries of a Young tableau with two columns of equal length. When these theories also have a topological biform current, its conservation law is anomalous, and this is sufficient to fix the currentcurrent correlation function and infer the presence of a massless mode in the spectrum. 
Mark Trodden (U Penn)  Tue. March 28th, 2023 11:30 am12:30 pm 
Coupled Early Dark Energy ZOOM ID: 999 3023 4812, Passcode: PAsems https://cwru.zoom.us/j/99930234812?pwd=a0tid3VOTzJHTkxBWnNjWmtsNmd5UT09 
Kersten Perez (Columbia)  Tue. March 21st, 2023 11:30 am12:30 pm 
Cancelled for this semester 
Sebastian UrrutiaQuiroga (U. Mass)  Tue. March 7th, 2023 11:30 am12:30 pm 
TeVscale LNV: 0νββdecay, energy frontier probes, and the origin of matter Lepton number violation (LNV) is a very attractive research topic for theoretical and experimental physicists due to its implications beyond the Standard Model. It provides feasible theoretical explanations to several open questions in particle physics (e.g., the origin of neutrino mass) and has a rich phenomenology at different energy scales. We explore the underlying connections between neutrinoless double −decay (0) experiments, hadron colliders, and cosmology observations. In the context of simplified models, we show that future collider and 0 experimental results may complement each other. 
Carlos Cardona (CWRU)  Tue. February 28th, 2023 11:30 am12:30 pm 
The Conformal Bootstrap: An overview of recent analytical and numerical approaches. Conformal field theories have been long known to describe the universal physics of scale invariant critical points, such those occurring at regions near to continuous phase transitions in fluids, ferromagnets and quantum field theories. Studying conformal field theories would help us to understand those universal characteristics that relate several seemingly unrelated physical systems. Also from a renormalization group perspective, studying the space of conformal field theories amounts to studying the space of all welldefined (or UV complete) quantum field theories. 
Evangelos Sfakianakis (CWRU)  Tue. February 21st, 2023 11:30 am12:30 pm 
Fieldspace surprises in multifield preheating 
Arnab Dasgupta (PITT PACC – Univ. of Pittsburgh)  Tue. February 7th, 2023 11:30 am12:30 pm 
Dynamical Inflation Stimulated Cogenesis Continue reading… Arnab Dasgupta (PITT PACC – Univ. of Pittsburgh) 
Mengjiao Xiao (MIT)  Tue. January 31st, 2023 11:30 am12:30 pm 
In Search of CosmicRay Antinuclei from Dark Matter with the GAPS Experiment The origin of dark matter is a driving question of modern physics. Finding dark 
Sadra Jazayeri (Institut d’Astrophysique de Paris)  Tue. January 24th, 2023 11:30 am12:30 pm 
Cosmological Phonon Collider Continue reading… Sadra Jazayeri (Institut d’Astrophysique de Paris) 
Walter Pettus (Indiana U)  Tue. November 29th, 2022 11:30 am12:30 pm 

Antonella Palmese (Carnegie Mellon) [Postponed]  Tue. November 15th, 2022 11:30 am12:30 pm 
Probing the Universe’s expansion and the origin of compact object binaries with multimessenger astronomy The synergy between gravitational wave (GW) experiments and optical surveys such as the Dark Energy Survey (DES) and the Dark Energy Spectroscopic Instrument (DESI) is most prominent in the discovery of electromagnetic counterparts to GW events and the application of the standard siren method, which has already enabled several measurements of the Hubble Constant. Our DES followup observations of the first binary neutron star merger detected by LIGO/Virgo, GW170817, enabled the discovery of the first optical counterpart to a GW event, and provided information about the origin of the binary. Continue reading… Antonella Palmese (Carnegie Mellon) [Postponed] 
Andrius Tamosiunas (CWRU)  Tue. November 8th, 2022 11:30 am12:30 pm 
Numerical Studies of Screening Mechanisms in Modified Gravity 
Caprice Phillips (Ohio State)  Tue. November 1st, 2022 11:30 am12:30 pm 
Title: Exploring Potential Biosignatures in Exoplanet Atmospheres with Current and Future Telescopes
Abstract: Exoplanets with radii between those of Earth and Neptune (1.7 – 3.4 Earth radii) have stronger surface gravity than Earth, and can retain a sizable hydrogendominated atmosphere. In contrast to gas giant planets, we call these planets gas dwarf planets. Furthermore, terrestrial planets below the radius valley (< 1.5 Earth radii), may also have the ability to hold onto hydrogendominated atmospheres. Generally, planets with hydrogen/helium dominated atmospheres may be more amenable targets for transmission spectroscopy with current and upcoming spacebased missions. In this talk, 
Johanna Nagy (Washington University in St. Louis)  Tue. October 11th, 2022 11:30 am12:30 pm 
Title: Abstract: Measurements of the polarization of the Cosmic Microwave Background (CMB) are a powerful probe of the composition and evolution of the Universe. From searching for evidence of inflation shortly after the Big Bang to measuring the optical depth to reionization and probing fundamental particles, precision CMB measurements provide a unique window into many aspects of cosmology. Upcoming balloon and groundbased experiments will build on technologies demonstrated by current instruments to overcome the challenges presented by increasing sensitivity, mitigating systematic errors, and distinguishing Galactic foregrounds. Continue reading… Johanna Nagy (Washington University in St. Louis) 
Fernando Cornet Gomez (CWRU)  Tue. October 4th, 2022 11:30 am12:30 pm 
Electron and Muon g2 in a 2HDM ZOOM ID: 999 3023 4812, Passcode: PAsems https://cwru.zoom.us/j/99930234812?pwd=a0tid3VOTzJHTkxBWnNjWmtsNmd5UT09 
Maura McLaughlin (West Virginia University)  Tue. September 27th, 2022 11:00 am12:30 pm 
Title: Pulsar Timing Arrays See Red: Entering the Era of LowFrequency Gravitational Wave Detection Abstract: Millisecond pulsars are rapidly rotating neutron stars with phenomenal rotational stability. Pulsar timing arrays worldwide monitor over 100 of these cosmic clocks in order to detect perturbations due to gravitational waves at nanohertz frequencies. These gravitational waves will most likely result from an ensemble of supermassive black hole binaries. Their detection and subsequent study will offer unique insights into galaxy growth and evolution over cosmic time. I will present the most recent NANOGrav and International Pulsar Timing Array datasets and the results of gravitational wave analyses which suggest the presence of a common “red” Continue reading… Maura McLaughlin (West Virginia University) 
Qiuyue Liang (U Penn)  Tue. September 20th, 2022 11:30 am12:30 pm 
Title: NeutrinoAssisted Early Dark Energy: Theory and Cosmology Abstract: The tension between measurements of the Hubble constant obtained at different redshifts may provide a hint of new physics active in the relatively early universe, around the epoch of matter radiation equality. A leading paradigm to resolve the tension is a period of early dark energy, in which a scalar field contributes a subdominant part of the energy budget of the universe at this time. This scenario faces significant finetuning problems which can be ameliorated by a non trivial coupling of the scalar to the standard model neutrinos. These become nonrelativistic close to the time of matterradiation equality, 
Marcell Howard (U Pittsburg)  Tue. September 13th, 2022 11:30 am12:30 pm 
An Exact Fermionic ChernSimonsKodama State in Quantum Gravity Abstract: The ChernSimonsKodama (CSK) state is an exact, nonperturbative wave function in the Ashtekar formulation of classical General Relativity. In this work, we find a generalized fermionic CSK state by solving the extended gravitational and fermionic Hamiltonian constraints of the WheelerDeWitt equation exactly. We show that this new state reduces to the original Kodama state upon symmetry reduction to FRW coordinates with perturbative fermionic corrections, making contact with the HartleHawking and Vilenkin wave functions of the universe in cosmology. We also find that when both torsion and fermions are nonvanishing, 
Soner Albayrak (Amsterdam U)  Tue. April 12th, 2022 11:30 am12:30 pm 
Conformal QED in 3d: The Numerical Bootstrap Approach The IR fixed point of quantum electrodynamics in three dimensions (QED3) is expected to be gapped for a small global symmetry group and strongly interacting for a large one. Concretely, QED3 with the flavor group SU(N) flows to a free theory for small N and to a conformal one for large N, whereas the critical flavor number is suggested to be anywhere between 1 and 10 by various theoretical and computational methods. This phase space of QED3 is very appealing, as it shows analogues of chiral symmetry breaking and confinement and hence can be used as a toy model for the quantum chromodynamics in four dimensions. 
Michael Trott (Niels Bohr Institute)  Tue. April 5th, 2022 11:30 am12:30 pm 
The Geometric SMEFT description of curved Higgs Field Space(s) 
Celeste Artale (University of Padova)  Tue. March 29th, 2022 11:30 am12:30 pm 
Modeling the host galaxies of binary compact object mergers across cosmic time The first direct detection of a gravitational wave (GW) in 2015 opened a new era for gravitationalwave astrophysics. Since then, more than 70 events have been announced by the LIGOVirgoKAGRA collaboration including merging binary black holes (most of them), binary neutron stars, and black hole – neutron star binary systems. GW observations will allow us to address an impressive set of questions in cosmology and astrophysics, such as the nature of dark matter, the nature of gravity, the early Universe, and the different stellar evolution stages currently under debate. 
Ondra Hulik (VUB)  Tue. March 15th, 2022 11:30 am12:30 pm 
Generalized geometry as a natural tool for supergravity I will describe how the concept of generalized geometry naturally appears in the context of supergravity theories. Using these tools of generalized geometry we can then see some of the odd features of the theory as having a geometric origin.
Host: Kurt Hinterbichler 
Jesse Liu (Cambridge)  Tue. March 1st, 2022 11:30 am12:30 pm 
Colliders and cosmic origin stories The foundational origins of diverse cosmic phenomena remain enduring enigmas. The LHC decisively tests longstanding cosmological origin hypotheses for dark matter such as supersymmetry, and mass genesis via the Higgs mechanism. Meanwhile, muons from highenergy cosmic rays are the archetypal ‘who ordered that?’ surprise and fittingly, recent muon measurements could be challenging standard paradigms again. The ATLAS experiment confronts these puzzles while pioneering innovations including photon collisions, forward detectors, heavyion beams, and unconventional datasets. Beyond colliders, quantum sensing progress enables nextgeneration haloscopes to illuminate axionlike origins of dark matter above microwave frequencies. 
Tim Gorringe (U Kentucky)  Tue. February 22nd, 2022 11:00 am12:00 pm 
Special time 11:00 am ET!! Precision measurements of the positive muon lifetime and muonic hydrogen atom lifetime I will describe the results from two sister experiments — MuLan and MuCap — conducted at at Paul Scherrer Institute (PSI) in Switzerland. In the MuLan experiment the positive muon lifetime was measured to +/1.0 ppm precision and used to extract the Fermi Constant G_F to +/0.6 ppm precision. In the MuCap experiment the muonic hydrogen atom lifetime was measured to +/10 ppm precision and used to extract the induced pseudoscalar coupling g_p of the proton weak interaction to +/7%. 
Qianshu Lu (Harvard)  Tue. February 15th, 2022 11:30 am12:30 pm 
Missing Scalars at the Cosmological Collider Light scalar fields typically develop spatially varying backgrounds during inflation. Very often they do not directly affect the density perturbations, but interact with other fields that do leave nontrivial signals in primordial perturbations. In this sense they become “missing scalars” at the cosmological collider. We study potentially observable signals of these missing scalars, focusing on a special example where a missing scalar distorts the usual oscillatory features in the squeezed bispectrum. The distortion is also a useful signal distinguishing the de Sitter background induced thermal mass from a constant intrinsic mass. 
Nathaniel Craig (UCSB)  Tue. February 8th, 2022 11:30 am12:30 pm 
Effective Field Theory and the Geometry of Electroweak Symmetry Breaking 
Benjamin Jones (UT Arlington)  Tue. February 1st, 2022 11:30 am12:30 pm 
Better Neutrinoless Double Beta Decay through Biochemistry The goal of future neutrinoless double beta decay experiments is to establish whether neutrino is its own antiparticle, by searching for an ultrarare decay process with a half life that may be more than 10^27 years. Such a discovery would have major implications for cosmology and particle physics, but requires tonscale detectors with backgrounds below 1 count per ton per year. This is a formidable technological challenge that has prompted consideration of unconventional solutions. I will discuss an approach being developed within the NEXT collaboration: high pressure xenon gas time projection chambers augmented with single molecule fluorescent imagingbased barium tagging. 
Harsh Mathur (CWRU)  Tue. January 25th, 2022 11:30 am12:30 pm 
The Phantom Menace: Modified Gravity as an Alternative to the Planet Nine Hypothesis An exciting development in outer solar system studies is the discovery of a new class of Kuiper belt objects with orbits that lie outside that of Neptune and have semimajor axes in excess of 250 A.U. The alignment of the major axes of these objects and other orbital anomalies are the basis for the Planet Nine hypothesis that an undiscovered giant planet orbits the sun at a distance of around 500 A.U. We show that a modified gravity theory known as MOND (Modified Newtonian Dynamics) provides an alternative explanation for the observed alignment, 
David Christopher Cyncynates (Stanford)  Tue. January 18th, 2022 11:30 am12:30 pm 
Friendship in the Axiverse The Axiverse is a scenario in which axionlike particles are distributed over many orders of magnitude in mass and interact with one another through a joint potential. In this talk, I will show how nonlinearities in this potential lead to a new type of resonant energy transfer between “friendly” axions with nearby masses. This resonance generically transfers energy from axions with larger decay constants to those with smaller decay constants, leading to a multitude of signatures. These include enhanced direct detection prospects for a resonant pair comprising even a small subcomponent of dark matter, 
Thibault Sohier (CNRS, Montpellier)  Fri. December 3rd, 2021 12:45 pm1:45 pm 
Michelson Postdoctoral Prize Lecture 4 2D materials discovery and design With the tools discussed in the previous lectures, we can now aim at materials discovery and design. 
Thibault Sohier (CNRS, Montepellier)  Tue. November 30th, 2021 11:30 am12:30 pm 
Michelson Postdoc Prize Lecture 2 Graphene case study: why is it so good, and can it be even better? Graphene is the first and most famous 2D material. Many of the prospects and challenges of the 2D realm were first raised by studying this material. It is exceptional on many levels, including its ability to conduct electrons with very little resistance from the phonons. In a journey towards modelling and engineering phononlimited transport in 2D materials, it is a natural starting point. 
Sophia Cisneros (Denver)  Tue. November 16th, 2021 11:30 pm12:30 pm 
Clock Effects as explanation for the flatrotation curve problem The flatrotation curve problem of spiral galaxies is commonly addressed by either Modified Newtonian Dynamics (MOND) or Dark Matter models (DM). Both approaches interpret the observations of shifted spectra as physical orbital velocities by the Lorentz Doppler formula, velocities which diverge from the expectations from luminous mass at large radii. Both approaches require new physics. We present a new relativistic approach, in which the Doppler shifted frequencies are not interpreted as physical velocities, but rather as frame effects due to our observation point in a rotating Milky Way galaxy. 
Avia RavivMoshe (SCGP)  Tue. November 9th, 2021 11:30 am12:30 pm 
Renormalization Group Flows on Line Defects In this talk, we will consider line defects in ddimensional CFTs. The ambient CFT places nontrivial constraints on renormalization group flows on such line defects. We will see that the flow on line defects is consequently irreversible and furthermore a canonical decreasing entropy function exists. This construction generalizes the g theorem to line defects in arbitrary dimensions. We will demonstrate this generalization in some concrete examples, including a flow between Wilson loops in 4 dimensions, and an O(3) bosonic theory coupled to impurities with large isospin. Host: Kara Farnsworth 
Gabriel Herczeg (Brown)  Tue. November 2nd, 2021 11:30 am12:30 pm 
The NewmanPenrose Map and the Classical Double Copy Gaugegravity dualities are powerful tools for understanding aspects of quantum gravity. Considerable progress has been made in relating scattering amplitudes in certain gravity theories to those in gauge theories—a correspondence which is sometimes called the “double copy.” Recently, double copies have also been realized in a classical setting as maps between exact solutions of gauge theories and gravity. In this talk, I will discuss a novel map between a certain class of real, exact solutions of Einstein’s equations, and selfdual solutions of the flatspace vacuum Maxwell equations. This map, 
David Jacobs (Norwich University)  Tue. October 26th, 2021 11:30 am12:30 pm 
What can effective quantum mechanics do for you? In this talk I will explain how a stubborn curiosity about boundary conditions in quantum mechanics led to the development of a longdistance effective approach to describing quantum mechanical systems, borrowing heavily from the ideas of effective field theory. I will describe how this approach is applied to yield an effective (quantum defect) theory of positronium. This is pertinent because of a recent 4.2 σ discrepancy between the theory of boundstate quantum electrodynamics (QED) and a recent transition frequency measurement by Gurung et al. (2020 & 2021). The effective theory that I will discuss not only provides an accurate and economical means to fit the positronium spectrum, 
Azadeh Maleknejad (CERN)  Tue. October 12th, 2021 11:30 am12:30 pm 
Is Our Universe the Remnant of Chiral Anomaly in Axion Inflation? Modern cosmology has been remarkably successful in describing the universe from a second after the Big Bang until today. However, its physics before that time is still much less certain. It profoundly involves particle theory beyond the Standard Model to explain longstanding puzzles: the origin of the observed matter asymmetry, and massive neutrinos, as well as the particle physics of dark matter and cosmic inflation. In this talk, I will explain that a new framework based on embedding axioninflation in leftright symmetric gauge extensions of the SM can possibly solve and relate these seemingly unrelated mysteries of modern cosmology. 
Judit Prat (U Chicago)  Tue. October 5th, 2021 11:30 am12:30 pm 
Cosmology from weak lensing and galaxy clustering in the Dark Energy Survey 
Rebecca Rapp (CMU)  Tue. September 28th, 2021 11:30 am12:30 pm 
Phenomenal cosmic insights; itty bitty recoils — CEvNS and the COHERENT experiment Coherent elastic neutrinonucleus scattering (CEvNS) is the neutral current process by which an incident neutrino interacts (coherently) with a whole nucleus and causes a *teensy* nuclear recoil (the only experimental observable). This Standard Model process was predicted more than 40 years ago, but it was unambiguously observed for the first time only after decades of advancement enabled the detection of such small recoils. In 2017, the COHERENT experiment made the first CEvNS observation on CsI at Oak Ridge National Laboratory, then followed up with CEvNS measurements on a second nuclear target (Ar) in 2020. 
Markus Luty (UC Davis)  Tue. September 21st, 2021 11:30 am12:30 pm 
Hamiltonian Truncation and the Future of Numerical Quantum Field Theory Hamiltonian truncation is a nonperturbative approximation of a quantum system based on projecting the Hilbert space onto a finitedimensional subspace and numerically diagonalizing the Hamiltonian on the subspace. This method has recently attracted renewed interest, but is still far less developed than lattice quantum field theory. In this talk, I will describe recent work that aims to advance Hamiltonian truncation as a tool for precision numerical studies of quantum field theory. First, I discuss the effective field theory of Hamiltonian truncation, which gives a systematic understanding of the errors made in the truncation and how to correct for them. 
Sergio Contreras (DIPC)  Tue. September 14th, 2021 11:30 am12:30 pm 
How well does galaxy clustering constrain cosmology? On the LCDM cosmology, dark matter collapses into virialise objects called haloes. The abundance and distribution of these haloes are a direct consequence of the cosmology of the Universe. By constraining the dark matter halo clustering, we could also constraint the cosmology from our Universe. Since dark matter haloes can not be observed, we need to use galaxies to trace them. In this talk, I will present a new method that we develop capable of constraining cosmological information from the redshift space galaxy clustering. We use the scaling of cosmological simulations and the SubHalo Abundance Matching extended (SHAMe) empirical model to produce realistic galaxy clustering measurements over a wide range of cosmologies. 
Allen Foster (CWRU)  Tue. September 7th, 2021 11:30 am12:30 pm 
Observing the TimeVariable mmWave Sky with SPT3G 
Yonatan Elbaz (NRCN/CWRU)  Tue. August 31st, 2021 11:30 am12:30 pm 
Selfsimilar solutions to the asymptotic evolution of RayleighTaylor and RichtmyerMeshkov instabilities and its dependence on the initial conditions Hydrodynamic instabilities are ubiquitous in nature and technological 
Don Scipione (ACMEX)  Tue. April 27th, 2021 11:30 am12:30 pm 
Nuclear Levels as Analyzers of High Energy Interactions The theme of the talk is measurement, and how a clever experiment can eliminate the need for complex, modeldependent analysis. My thesis demonstrated the ability of using the excitation of Carbon to its first excited state as a target to select diffractive high energy interactions. In this talk, I will describe unpublished results from an experiment performed at Brookhaven National Laboratory where this technique was used to study properties of the A1 meson, a diffractively produced excited state of the pion. The results are in (three sigma) tension with the Particle Data Group’s estimate for the A1 mass. 
Clara Murgui (Caltech)  Tue. April 20th, 2021 11:30 am12:30 pm 
Flavour Anomalies: LeptonQuark Unification at the TeV scale Deviations from the standard model predictions in the semileptonic decays of the B mesons have been reported by the LHCb and the Bfactories over the last decade. Among them, strikingly, a deviation of 3.1 sigma in one of the cleanest observables, R(K), was recently announced by the LHCb. In this talk we review the status of these socalled flavour anomalies in the light of the data at face value and the upcoming experimental measurements. We present the simplest theory where one can understand the unification of matter (quarks and leptons) and show how these anomalies can be naturally accommodated in its context and discuss what are their implications regarding other predictions. 
Alexis Plascencia (CWRU)  Tue. April 13th, 2021 10:30 am11:30 am 
New Forces: Dark Matter, Electric Dipole Moments and the Baryon Asymmetry of the Universe Abstract: I will discuss minimal gauge extensions of the Standard Model where a new sector is predicted from the cancellation of gauge anomalies. As part of this new sector, there is a dark matter candidate and new sources of CP violation. I will discuss the dark matter phenomenology and the prediction of large electric dipole moments (EDMs) for the electron and the neutron. I will also discuss how to address the baryon asymmetry of the Universe.
Host: Pavel Fileviez Perez 
Benjamin Grinstein (UCSD)  Tue. April 6th, 2021 12:30 pm1:30 pm 
Special time 12:30 pm ET!! The Neutron Decay Anomaly: how it may be a window to new Physics In this talk I will first review a longstanding discrepancy between the neutron lifetime as measured in beam and in bottle experiments. If this discrepancy is not due to a systematic error, it may be due to novel mechanisms for neutron transmutation into new, as yet unknown elementary particles. These particles would be electrically neutral, or socalled “dark”. We will explain several scenarios for the possibility of neutron transmutation into dark particles. For example, 
Delilah Gates (Harvard)  Tue. March 30th, 2021 11:30 am12:30 pm 
Photon Emission from Circular Equatorial Orbiters around Kerr Black Holes We consider monochromatic and isotropic photon emission from circular equatorial Kerr orbiters. We calculate the critical curve delineating the region of photon escape from that of photon capture in each emitter’s sky, allowing us to derive analytic expressions for the photon escape probability and the redshiftdependent total flux collected on the celestial sphere as a function of emission radius and black hole parameters. This critical curve generalizes to finite orbital radius the usual Kerr critical curve and displays interesting features in the limit of high spin. 
Hazel Mak (Brown University)  Tue. March 23rd, 2021 11:30 am12:30 pm 
On 1D, N = 4 Supersymmetric SachdevYeKitaev (SYK) Models Proposals are made to describe 1D, N = 4 supersymmetrical systems that extend SYK models by compactifying from 4D, N = 1 supersymmetric Lagrangians involving chiral, vector, and tensor supermultiplets. The coupling constants in the superfield Lagrangians are arbitrary, and can be chosen to be Gaussian random. In that case, these 1D, N = 4 supersymmetric SYK models would exhibit WishartLaguerre randomness, which share the same feature among 1D, N = 1 and N = 2 models in literature. One difference though, is our models contain dynamical bosons. 
No Seminar  Tue. March 16th, 2021 11:30 am12:30 pm 
No classes or seminars 
Tim Tait (UC Irvine)  Tue. March 9th, 2021 11:30 am12:30 pm 
An Early Period of QCD Confinement for Fun and Profit Abstract: I’ll discuss the possibility that QCD, the SU(3) encapsulating the strong nuclear force in the Standard Model, undergoes a period in the early history of the Universe in which it confines with a much larger confinement scale than is observed today. I’ll talk about the mechanics of how one can realize such a phenomenon, what the Universe would look like during this period and phenomenological implications, and potential applications to realize the observed baryon asymmetry or a modified picture for dark matter freeze out. For information about the speaker see this link Host: Pavel Fileviez Perez 
Ozenc Gungor (CWRU)  Tue. March 2nd, 2021 11:30 am12:30 pm 
A Classical, NonSingular Bounce Bouncing cosmological models offer a viable alternative to BigBang cosmology and have gained recent attention. In a bouncing cosmology, the universe is initially contracting towards a minimum size before expanding. Such cosmological models are geodesically complete by construction and offer simple solutions to problems such as the Horizon problem. I will present a model that realizes such a cosmology and discuss its analytical and numerical properties. I will also discuss ongoing work on the stability of cosmological perturbations and possible future directions. Host: Glenn Starkman Zoom meeting ID: 999 3023 4812 
Erik Shirokoff (UChicago)  Tue. February 23rd, 2021 11:30 am12:30 pm 
Line Intensity Mapping at millimeter wavelengths with onchip spectrometers Recent advances in superconducting technology have enabled dramatic improvements in the sensitivity of millimeter and submillimeter wavelength instruments in the last decade and helped to usher in the era of precision cosmology. The next frontier is intensity mapping: using large arrays of spectrometers to build a 3D model of the emission from galaxies, with the ability to measure the star formation history throughout the epoch of reionization and to significantly constrain extensions to contemporary cosmology and inflation. The key to this technology are superconducting detectors and the microwave readout required to populate dense focal planes. 
Shubham Maheshwari (Groningen)  Tue. February 16th, 2021 11:30 am12:30 pm 
Stable, ghostfree solutions in UV nonlocal gravity I consider higher derivative, UV modifications to GR. In particular, I will focus on a specific kind of string theoryinspired higher derivative gravity where one includes derivatives to all orders in the action. First, I will discuss how such a nonlocal theory of gravity admits stable, nonsingular bouncing solutions in the absence of matter. Moreover, around this bouncing background, there exists only one propagating (and ghostfree) scalar mode, and no vector or tensor modes. Next, I will discuss the general analysis of scalarvectortensor perturbations in nonlocal gravity – in particular, 
Tanguy Grall (Cambridge)  Tue. February 9th, 2021 11:30 am12:30 pm 
The Cosmological Phonon: Symmetries on SubHorizon Scales Curvature perturbations during inflation, which seed anisotropies in the CMB, can be described as phonons propagating on the inflationary background. Indeed the spacetime expansion breaks spontaneously time diffeomorphisms and Lorentz boost invariance generating such phononlike behaviour. This representation is at the heart of the construction of the Effective Field Theory (EFT) of inflation. In this talk I will present an algebraic classification of the possible symmetries of a shiftsymmetric scalar that is assumed to nonlinearly realise Lorentz boosts. Such theories include for instance scalar modes in the EFT of inflation on subhorizon scales, 
Joachim Brod (University of Cincinnati)  Tue. November 17th, 2020 11:30 am12:30 pm 
Precision StandardModel Prediction of epsilon_K The parameter epsilon_K describes CP violation in the neutral kaon 
Kara Farnsworth (CWRU)  Tue. November 10th, 2020 11:30 am12:30 pm 
The NewmanPenrose Map and the Classical Double Copy Abstract: Double copy relations between gauge and gravitational theories, originally found in the context of string theory and scattering amplitudes, have recently been realized in a classical setting as maps between exact solutions of gauge theories and gravity. I will present a new map between a certain class of real, exact solutions of Einstein’s equations and selfdual solutions of the flatspace vacuum Maxwell equations. This map, which we call the NewmanPenrose map, is welldefined even for nonvacuum, nonstationary spacetimes, providing a systematic framework for exploring gravity solutions in the context of the double copy that have not been previously studied in this setting. 
Ravi Sheth (University of Pennsylvania)  Tue. November 3rd, 2020 11:30 am12:30 pm 
Energy as a guiding principle in nonlinear structure formation Abstract: One goal of studies of large scale structure formation is to understand why the dense, virialized clumps which host galaxies form where they do. In cold dark matter cosmologies, the late time field retains some memory of the initial conditions, which models of dark matter halo formation try to exploit. The simplest models are motivated by a spherical collapse calculation which dates back to the early 1970s. In the late 1980s, this approximation for the physics of collapse was coupled with the heuristic assumption that collapse occurs around regions that are maxima of the initial matter density fluctuation field. 
Zach Weiner (University of Illinois)  Tue. October 27th, 2020 11:30 am12:30 pm 
Seeing the dark: gravitational relics of dark photon production Axionlike particles are a recurrent feature of models of early Universe phenomena, spanning inflation, dark matter, and solutions to the Hubble tension. The nonperturbative decay of axions into beyond the Standard Model photons is a generic feature of these models. I will present the complex nonperturbative and nonlinear dynamics of axion–gaugefield couplings, studied via numerical simulation. These scenarios result in a significant stochastic background of gravitational waves, which provides various means to rule out and constrain models. In the two examples I will present, the (over)production of GHz gravitational waves at preheating imposes the tightest constraints on the inflaton’s axial coupling to gauge fields, 
David Weinberg (Ohio State University and Institute for Advanced Study)  Tue. October 20th, 2020 11:30 am12:30 pm 
Decoding Chemical Evolution and Nucleosynthesis I will discuss insights from analytic and numerical models of galactic chemical evolution and observations of Milky Way elemental abundances from the Sloan Digital Sky Survey’s APOGEE project. Under generic model assumptions, abundances and abundance ratios approach an equilibrium in which element production from nucleosynthesis is balanced by element depletion from star formation and outflows. The efficiency of outflows required to reproduce observed abundances is strongly degenerate with the uncertain overall scale of supernova yields. APOGEE observations show that the distributions of stars in (magnesium,iron,age)space change steadily across the Milky Way disk, Continue reading… David Weinberg (Ohio State University and Institute for Advanced Study) 
Benjamin Elder (University of Hawaii)  Tue. October 13th, 2020 11:30 am12:30 pm 
Chameleon dark energy in the lab 
Chunshan Lin (Warsaw)  Tue. October 6th, 2020 11:30 am12:30 pm 
Is GR unique? Not sure. I will present an iterative Hamiltonian approach, to build up a gravity theory with all constraints being first class and thus possesses only 2 local degrees of freedom. The results are conjectural, rather than conclusive. If it is true, however, it implies GR may not be unique in the 4dimensional spacetime. If time permits, I will also briefly discuss the recently proposed 4D EinsteinGaussBonnet gravity, which was another attempt of mine, yet probably unsuccessful one, along the line. Zoom meeting ID: 999 3023 4812

Anson Hook (Maryland)  Tue. September 29th, 2020 11:30 am12:30 pm 
A CMB Millikan Experiment with Cosmic Axiverse Strings We study axion strings of hyperlight axions coupled to photons. These axions strings produce a distinct quantized polarization rotation of CMB photons which is O(1%). As the CMB light passes many strings, this polarization rotation converts Emodes to Bmodes and adds up like a random walk. Using numerical simulations we show that the expected size of the final result is well within the reach of current and future CMB experiments through the measurement of correlations of CMB Bmodes with E and Tmodes. The quantized polarization rotation angle is topological in nature and its value depends only on the anomaly coefficient, 
Xiaoju Xu (CWRU)  Tue. September 22nd, 2020 11:30 am12:30 pm 
Halo and galaxy assembly bias Measuring galaxy clustering is an effective way to gain knowledge of galaxy formation and constraining cosmology. Cosmology determines dark matter halo population and clustering, and halo clustering and halo occupation determine the galaxy clustering. It is important to understand halo clustering and galaxyhalo connection to build halo occupation models. In Nbody simulations, halo clustering is shown to depend not only on halo mass but also on secondary halo properties, which is called the halo assembly bias. However, traditional halo occupation models only consider halo mass dependence and ignore effects caused by secondary halo properties. 
Gordan Krnjaic (Fermilab)  Tue. September 15th, 2020 11:30 am12:30 pm 
A Dark Matter Interpretation of Excesses in Multiple Direct Detection Experiments We present a novel unifying interpretation of excess event rates observed in several dark matter directdetection experiments that utilize singleelectron threshold semiconductor detectors. Despite their different locations, exposures, readout techniques, detector composition, and operating depths, these experiments all observe statistically significant excess event rates of ~10 Hz/kg. However, none of these persistent excesses has yet been reported as a dark matter signal because their common spectral shapes are inconsistent with dark matter particles scattering elastically off detector nuclei or electrons. We show that these results can be reconciled if the semiconductor detectors are seeing a collective inelastic process known as a plasmon. 
Hooman Davoudiasl (Brookhaven)  Tue. September 8th, 2020 11:30 am12:30 pm 
Ultralight Fermionic Dark Matter Tremaine and Gunn argued long ago that fermionic dark matter lighter than a few hundred eV is not feasible, based on the Pauli exclusion principle. We highlight a simple way of evading this conclusion which can lead to various interesting consequences. In this scenario, a large number of fermionic species with quasidegenerate masses and no couplings, other than gravitational, to the standard model are assumed. Nonetheless, we find that gravitational interactions can lead to constraints on the relevant parameter space, based on high energy data from the LHC and cosmic ray experiments, 
Saurabh Kumar (CWRU)  Tue. September 1st, 2020 11:30 am12:30 pm 
Radiating Macroscopic Dark Matter Dark matter is believed to constitute about 5/6th of the matter in the universe, but its nature and interactions remain one of the great puzzles of fundamental physics. Despite extensive experimental efforts, there have been no widely believed detections of WIMPS, axions or any other physics Beyond the Standard Model (BSM) (except for neutrino oscillations, which are BSM principally by historical accident). The question then arises: could the Standard Model, the most accurate and extremely welltested theory of all observed particles in nature, explain dark matter as well? Many models of exotic quark matter have been proposed, 
Jagjit Singh Sidhu (CWRU)  Tue. March 3rd, 2020 11:30 am12:30 pm 
Charge Constraints of Macroscopic Dark Matter Macroscopic dark matter (macros) refers to a broad class of alternative candidates to particle dark matter with still unprobed regions of parameter space. Prior work on macros has considered elastic scattering to be the dominant energy transfer mechanism in deriving constraints on the abundance of macros for some range of masses and (geometric) crosssections. However, macros with a significant amount of electric charge would, through Coulomb interactions, interact strongly enough to have produced observable signals on terrestrial, galactic and cosmological scales. We determine the expected phenomenological signals and constrain the corresponding regions of parameter space, 
Shruti Paranjape (University of Michigan)  Tue. February 25th, 2020 11:30 am12:30 pm 
BornInfeld Theory Beyond the Leading Order The modern approach to scattering amplitudes exploits the symmetries of effective field theories. In this talk, I will focus on BornInfeld, a theory of nonlinear electrodynamics that has a myriad of interesting properties: It can be obtained as the “double copy” of YangMills and chiral perturbation theory and it is the supersymmetric truncation of lowenergy brane dynamics. BornInfeld theory also has a classical electromagnetic duality symmetry. I will discuss how one can use these nice properties to uniquely fix all treelevel amplitudes in the theory. At subleading order, I will address oneloop amplitudes and admissible higher derivative corrections to the BornInfeld effective field theory. 
Charlotte Sleight (IAS Princeton)  Tue. February 11th, 2020 11:30 am12:30 pm 
A Mellin Space Approach to Scattering in de Sitter Space Boundary correlators in (anti)de Sitter spacetimes are notoriously difficult beasts to tame. In AdS, where such observables are equivalent to CFT correlation functions, recent years have seen significant progress in our understanding of their structure owing to the development of numerous systematic techniques, many of which have drawn inspiration from the successes and the strengths of the scattering amplitudes programme in flat space. In dS however, the problem is more complicated owing to the timedependence of the background and it is unclear how consistent time evolution is encoded in spatial correlations on the boundary. 
Craig Hogan (University of Chicago)  Tue. February 4th, 2020 11:30 am12:30 pm 
Holographic Inflation: Symmetries in the relic pattern of primordial perturbations from a coherent quantum inflationary horizon A reconciliation of quantum mechanics with gravity might be achieved in a holographic theory of quantum gravity, based on coherent states of covariant causal structures. This talk will review the properties of quantumgravitational perturbations generated during cosmic holographic inflation, in which the inflationary horizon is a coherent quantum object, like the horizon of a black hole. A new analysis of cosmic anisotropy will be described, which shows evidence for some of the new symmetries. 
Matthew Digman (Ohio State University)  Tue. January 28th, 2020 11:30 am12:30 pm 
Not as big as a barn: Upper bounds on dark matternucleus cross sections Critical probes of dark matter come from tests of its elastic scattering with nuclei. The results are typically assumed to be model independent, meaning that the form of the potential need not be specified and that the cross sections on different nuclear targets can be simply related to the cross section on nucleons. For pointlike spinindependent scattering, the assumed scaling relation is σχA∝A2μ2AσχN∝A4σχN, where the A2 comes from coherence and the μ2A≃A2m2N from kinematics for mχ≫mA. Here we calculate where model independence ends, 
Adi Nusser (Technion)  Tue. January 14th, 2020 11:30 am12:30 pm 
New and old probes of the structure of the evolved Universe The observed large scale distribution of galaxies and their peculiar motions (on top of the pure Hubble flow) are very well described in the framework of the standard Lambda Cold Dark Matter model. The model is founded on general relativity (GR) which in itself has recently gained substantial support by the detection of gravitational waves. Despite this success, observational data on large scales allow for deviations from the GR and the standard model. Any tiny deviation may have profound implications on fundamental physical theory of the Universe. 
Bira van Kolck (Institut de Physique Nucleaire d’Orsay and University of Arizona)  Tue. December 10th, 2019 11:30 am12:30 pm 
A New Leading Mechanism for Neutrinoless DoubleBeta Decay … or how to attract the ire of the community. The neutrinoless doublebeta decay of nuclei is essentially the only way to test leptonnumber violation coming from the possible Majorana character of neutrinos. Tremendous effort is dedicated to its measurement and to reducing the theoretical uncertainty in the calculation of the nuclear matrix elements needed for its interpretation. Well, we increase the uncertainty. Continue reading… Bira van Kolck (Institut de Physique Nucleaire d’Orsay and University of Arizona) 
Roman Scoccimarro (NYU)  Tue. November 26th, 2019 11:30 am12:30 pm 
Bispectrum Bias Loops and Power Spectrum Covariance I will discuss recent progress in two topics in largescale structure: 1) understanding galaxy bias beyond leading order in perturbation theory and its application to the bispectrum, and 2) how to model the covariance of the galaxy power spectrum multipoles analytically instead of using numerical simulations. 
Garrett Goon (CMU)  Tue. November 19th, 2019 11:30 am12:30 pm 
Linking Corrections to Entropy and Extremality I will prove that the leading perturbative corrections to the entropy and extremality bounds of black holes are directly proportional to each other, generically. This fact is intimately related to the Weak Gravity Conjecture, as I will discuss. The proof is purely thermodynamic and applies to systems beyond the gravitational realm. 
Jesse Thaler (MIT)  Fri. November 15th, 2019 12:45 pm1:45 pm 
Quantum Algorithms for Collider Physics As particle physics experiments continue to stretch the limits of classical computation, it is natural to ask about the potential future role of quantum computers. In this talk, I discuss the potential relevance of quantum algorithms for collider physics. I present a proofofconcept study for “thrust”, a wellknown collider observable that has O(N^3) runtime for a collision involving N finalstate particles. Thrust is a particularly interesting observable in this context, since it has two dual formulations, one which naturally maps to quantum annealing and one which naturally maps to Grover search. 
Clara Murgui (IFIC, Valencia)  Tue. November 5th, 2019 11:30 am12:30 pm 
The QCD Axion and Unification The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the PecceiQuinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range ma ≃ (3 − 13) × 10−9 eV. We study the axion phenomenology and find that the ABRACADABRA and CASPErElectric experiments will be able to fully probe this mass window. 
Juri Smirnov (Ohio State University)  Tue. October 29th, 2019 11:30 am12:30 pm 
Dark Matter Research with Bound Systems 
Chi Tian (CWRU)  Tue. October 15th, 2019 11:30 am12:30 pm 
BlackHole Lattices as Cosmological Models Challenges for modern cosmology include determining the influence the smallscale structure has in the universe on its largescale dynamics and observations. With numerical relativity tools, finding and exploring cosmological models which are exact solutions to the Einstein equations will resolve all the nonlinearities so that give us hints on quantifying the influence. In this talk, I will introduce BlackHole Lattice models, which are subsets of relativistic discrete cosmological models. In particular, I will start from constructing those spacetimes and show what we can learn from exploring their properties. 
Cedric Weiland (University of Pittsburgh)  Tue. October 8th, 2019 11:30 am12:30 pm 
Electroweak measurements at electronpositron colliders as indirect searches for heavy neutrinos Heavy neutrinos are part of many extensions of the Standard Model, in particular seesaw models that can explain the light neutrino masses and mixing. Future electronpositron colliders would greatly increase the precision of the measurements of electroweak processes. I will discuss how this improved precision offers new opportunities to search for the effects of heavy neutrinos. In particular, I will focus on indirect search strategies based on the modifications of the production crosssections of W or Higgs bosons at linear collider. These searches are complementary to other observables and would allow to probe the multiTeV mass regime at future colliders. 
Gilles Gerbier (Queen’s U)  Tue. October 1st, 2019 11:30 am12:30 pm 
Searching for low mass dark matter particles at SNOLAB 90 years after its first evidence by F Zwicky, the nature of the dark matter of the Universe is still unknown. There is a consensus it should be made of elementary particles but their search has been going on for several decades without success. Huge progress in sensitivity has been done, though, thanks to new innovative detection techniques. Indeed some new techniques allow to enlarge the exploration of parameter space. I will describe status of two projects I have developed, within international collaborations, thanks to a CERC grant in Canada, 
Laura Johnson (CWRU)  Tue. September 24th, 2019 11:30 am12:30 pm 
Massive Gravitons in Curved Spacetimes This talk will cover various interesting topics that occur in massive spin2 on various spacetimes 
Goran Senjanovic (ICTP, Trieste)  Fri. September 20th, 2019 12:45 pm1:45 pm 
The fall and rise of parity and the origin of (neutrino) mass 
Goran Senjanovic (ICTP, Trieste)  Wed. September 18th, 2019 1:30 pm2:30 pm 
Strong CP violation: fancy and fact 
Callum Jones (University of Michigan)  Tue. September 10th, 2019 11:30 am12:30 pm 
BornInfeld Electrodynamics at OneLoop The BornInfeld model is an effective field theory of central importance describing the lowenergy dynamics of massless gauge bosons on the worldvolume of Dbranes. Though it is in many ways exceptional in the universality class of models of nonlinear electrodynamics, several aspects of the physics of the BornInfeld model remain mysterious. In this talk I will explain how aspects of the model, obscured in the traditional formulation of Lagrangian field theory, are clarified by directly studying the onshell Smatrix. In particular in 3+1dimensions, classical BornInfeld has an electromagnetic duality symmetry which manifests in treelevel scattering amplitudes as the conservation of a chiral charge. 
Erin Blauvelt (Lehigh University)  Mon. September 9th, 2019 3:15 pm4:15 pm 
Striped and Superconducting Phases in Holography There is a duality out of the framework of string theory that tells us, in certain cases, gravity can be thought of as emerging from the quantum mechanical degrees of freedom of a system. Remarkably, this relationship has not only given us a long sought after microscopic description of black holes and insights into the fabric of spacetime, but has also proven itself useful as a novel analytic toolset to investigate nonperturbative systems. Known as holography, this weak/strong coupling duality allows us to examine strongly coupled quantum systems by mapping them to perturbative, 
Bharat Ratra (Kansas State University)  Fri. September 6th, 2019 11:30 am12:30 pm 
Cosmological Seed Magnetic Field from Inflation A cosmological magnetic field of nG strength on Mpc length scales could be the seed magnetic field needed to explain observed few microG largescale galactic magnetic fields. I first briefly review the observational and theoretical motivations for such a seed field, two galactic magnetic field amplification models, and some noninflationary seed field generation scenarios. I then discuss an inflation magnetic field generation model. I conclude by mentioning possible extensions of this model as well as potentially observable consequences. 
Jacob Seiler (Swinburne University of Technology, Melbourne)  Tue. May 7th, 2019 11:30 am12:30 pm 
Coupling Galaxy Evolution and the Epoch of Reionization The Epoch of Reionization is a pivotal period in our cosmic history, representing the transition from a neutral postrecombination Universe into the fully ionized one we observe today. The procession of reionization is dictated by the fraction of ionizing photons, fesc, that escapes from galaxies to ionize the intergalactic medium, with the exact value and functional form still an open question. I explore this question using the SemiAnalytic Galaxy Evolution (SAGE) model to generate galaxy properties, such as the number of ionizing photons emitted, and follow different possible Epoch of Reionization scenarios with a seminumerical scheme. Continue reading… Jacob Seiler (Swinburne University of Technology, Melbourne) 
Yue Zhang (Fermilab)  Tue. April 16th, 2019 11:30 am12:30 pm 
Electroweak Baryogenesis, ACME II, and Dark Sector CP Violation 
James Wells (University of MichiganAnn Arbor)  Tue. April 9th, 2019 11:30 am12:30 pm 
Unification and Precision Measurements Continue reading… James Wells (University of MichiganAnn Arbor) 
Maura McLaughlin (West Virginia University)  Tue. April 2nd, 2019 11:30 am12:30 pm 
The NANOGrav 11year Data Set: New Insights into Galaxy Growth and Evolution 
Benjamin Monreal (CWRU)  Tue. March 19th, 2019 11:30 am12:30 pm 
Giant telescopes, exoplanets, and astronomy in the 2020s 
Bhupal Dev (Washington University)  Tue. March 5th, 2019 11:30 am12:30 pm 
New Physics at Neutrino Telescopes Abstract: The recent observation of highenergy neutrinos at the IceCube neutrino telescope has opened a new era in neutrino astrophysics. Understanding all aspects of these events is very important for both Astrophysics and Particle Physics ramifications. In this talk, I will discuss a few possible new physics scenarios, such as dark matter, leptoquarks and supersymmetry, that could be probed using the IceCube data. I will also relate this to the puzzling observation of two upgoing EeV events recently made by the ANITA experiment, which were not seen by IceCube. 
Brian Batell (University of Pittsburgh )  Tue. February 26th, 2019 11:30 am12:30 pm 
Breaking Mirror Hypercharge in Twin Higgs Models 
Aaron Pierce (University of MichiganAnn Arbor)  Tue. February 19th, 2019 11:30 am12:30 pm 
Supersymmetry, Hidden Sectors, and Baryogenesis Continue reading… Aaron Pierce (University of MichiganAnn Arbor) 
Riccardo Penco (Carnegie Mellon University)  Tue. February 12th, 2019 11:30 am12:30 pm 
Constraining the gravitational sector with black hole perturbations 
Joshua Berger (University of Pittsburgh)  Tue. February 5th, 2019 11:30 am12:30 am 
Searching for the dark sector in neutrino detectors 
James Bonifacio (CWRU)  Tue. January 22nd, 2019 11:30 am12:30 pm 
Shift Symmetries in (Anti) de Sitter Space 
Alexis D. Plascencia (CWRU)  Tue. January 15th, 2019 11:30 am12:30 pm 
Tauphilic dark matter coannihilation at the LHC and CLIC
Abstract: We will discuss a set of simplified models of dark matter with threepoint interactions between dark matter, its coannihilation partner and the Standard Model particle, which we take to be the tau lepton. The contribution from dark matter coannihilation is highly relevant for a determination of the correct relic abundance. Although these models are hard to detect using direct and indirect detection, we will show that particle colliders can probe large regions in the parameter space. Some of the models discussed are manifestly gauge invariant and renormalizable, 
Stephane Coutu (Penn State)  Tue. December 4th, 2018 11:30 am12:30 pm 
Abstract: Host: Covault 
Mark B. Wise (Caltech)  Tue. November 27th, 2018 11:30 am12:30 pm 
Loop induced inflationary nonGaussianites that give rise to an enhanced galaxy power spectrum at small wavevectors Host: Fileviez Perez 
Jure Zupan (University of Cincinnati)  Tue. November 20th, 2018 11:30 am12:30 pm 
Effective field theories for dark matter direct detection Abstract: I will discuss the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. In general, a single partonic operator already matches onto several nonrelativistic operators at leading order in chiral counting. Thus, keeping only one operator at the time in the nonrelativistic effective theory does not properly describe the scattering in direct detection. Moreover, the matching of the axial–axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, 
Jonathan Ouellet (MIT)  Tue. November 13th, 2018 11:30 am12:30 pm 
First Results from the ABRACADABRA10cm Prototype The evidence for the existence of Dark Matter is well supported by 
Francesc Ferrer (Washington University)  Tue. October 30th, 2018 11:30 am12:30 pm 
Primordial black holes in the wake of LIGO The detection of gravitational waves from the merger of black holes of ~30 solar masses has reignited the interest of primordial black holes (PBHs) as the source of the dark matter in the universe. We will review the existing constraints on the abundance of PBHs and the implications for several fundamental physics scenarios. A small relic abundance of heavy PBHs may play and important role in the generation of cosmological structures, and we will discuss how such a PBH population can be generated by the collapse of axionic topological defects. 
Xiaoju Xu (University of Utah)  Tue. October 16th, 2018 11:30 am12:30 pm 
Multivariate Dependent Halo and Galaxy Assembly Bias Galaxies form in dark matter halos, and their properties and 
Brad Benson (University of Chicago)  Tue. October 9th, 2018 11:30 am12:30 pm 
New Results from the South Pole Telescope I will give an overview of the South Pole Telescope (SPT), a 10meter diameter telescope at the South Pole designed to measure the cosmic microwave background (CMB). The SPT recently completed 10 years of observations, over which time it has been equipped with three different cameras: SPTSZ, SPTpol, and SPT3G. I will discuss recent results from the SPTSZ and SPTpol surveys, including: an update on the SPT SunyaevZel’dovich (SZ) cluster survey, and joint analyses with the optical dark energy survey (DES); a comparison of CMB measurements between SPTSZ and the Planck satellite; 
Tim Linden (Ohio State University)  Tue. October 2nd, 2018 11:30 am12:30 pm 
2018 Michelson Postdoctoral Prize Lecture 2 The Rise of the Leptons: Emission from Pulsars will Dominate the next Decade of TeV GammaRay Astronomy HAWC observations have detected extended TeV emission coincident with the Geminga and Monogem pulsars. In this talk, I will show that these detections have significant implications for our understanding of pulsar emission. First, the spectrum and intensity of these “TeV Halos” indicates that a large fraction of the pulsar spindown energy is efficiently converted into electronpositron pairs. This provides observational evidence necessitating pulsar interpretations of the rising positron fraction observed by PAMELA and AMS02. 
Mahmoud Parvizi (Vanderbilt University)  Tue. September 25th, 2018 11:30 am12:30 pm 
Cosmological Observables via Nonequilibrium Quantum Dynamics in Nonstationary Spacetimes Abstract: In nearly all cases cosmological observables associated with quantum matter fields are computed in a general approximation, via the standard irreducible representations found in the operator formalism of particle physics, where intricacies related to a renormalized stressenergy tensor in a nonstationary spacetime are ignored. Models of the early universe also include a hot, dense environment of quantum fields where farfromequilibrium interactions manifest expressions for observables with leading terms at higher orders in the coupling. A more rigorous treatment of these cosmological observables may be carried out within the alternative framework of algebraic quantum field theory in curved spacetime, 
Miguel Zumalacarregui (UC Berkeley & IPhT Saclay)  Tue. September 18th, 2018 11:30 am12:30 pm 
The Dark Universe in the Gravitational Wave Era Continue reading… Miguel Zumalacarregui (UC Berkeley & IPhT Saclay) 
Andre De Gouvea (Northwestern Univ.)  Fri. September 7th, 2018 12:45 pm1:45 pm 
Chiral Dark Sectors, Neutrino Masses, and Dark Matter I discuss the hypothesis that there are new chiral fermions particles that transform under a new gauge group. Along the way, I present one mechanism for constructing nontrivial, chiral gauge theory and explore the phenomenology – mostly related to nonzero neutrino masses and the existence of dark matter – associated to a couple of concrete example. Host: Fileviez Perez 
Anastasia Fialkov (Harvard Univ.)  Tue. August 7th, 2018 11:30 am12:30 pm 
SHINING LIGHT INTO COSMIC DARK AGES The first billion years is the leastexplored epoch in cosmic history. The first claimed detection of the 21 cm line of neutral hydrogen by EDGES (announced at the end of February this year) – if confirmed – would be the first time ever that we witness star formation at cosmic dawn. Join Dr. Fialkov as she discusses theoretical modeling of the 21 cm signal, summarizes the status of the field after the EDGES detection, and shares thoughts on prospects for future detections of this line. Host: Starkman 
Amy Connolly (The Ohio State University)  Tue. May 8th, 2018 11:30 am12:30 pm 
High Energy Neutrino Astronomy through Radio Detection Multimessenger astronomy has entered an exciting new era with the recent discovery of both gravitational waves and cosmic neutrinos. I will focus on neutrinos as particles that can uniquely probe cosmic distances at the highest energies. While optical Cerenkov radiation has been used for decades in neutrino experiments, the radio Cerenkov technique has emerged in the last 15 years as the most promising for a longterm program to push the neutrino frontier by over a factor of 1000 in energy. I will give an overview of the current status and future of the radio neutrino program, 
Stuart Raby (Ohio State University)  Tue. May 1st, 2018 11:30 am12:30 am 
Fitting amu and B physics anomalies with a Z’ and a Vectorlike 4th family in the Standard Model The Standard Model is very successful. Nevertheless, there are some, perhaps significant, discrepancies with data. A particularly interesting set of discrepancies hints at new physics related to muons. I will review the data and recent NP models trying to fit the data. Then I will discuss a very simple model which is motivated by heterotic string constructions. 
Tyce DeYoung (Michigan State University)  Tue. April 24th, 2018 11:30 am12:30 am 
First light at the IceCube Neutrino Observatory 
Camille Avestruz (Kavli Institute for Cosmological Physics, University of Chicago)  Tue. April 17th, 2018 11:30 am1:30 pm 
Computationally Probing Large Structures Continue reading… Camille Avestruz (Kavli Institute for Cosmological Physics, University of Chicago) 
Hayden Lee (Harvard University)  Tue. April 3rd, 2018 11:30 am12:30 am 
Collider Physics for Inflation 
Segev BenZvi (University of Rochester)  Tue. March 27th, 2018 11:30 am12:30 am 
The Latest Results from the HAWC Very HighEnergy Gammaray Survey 
Cliff Cheung (Caltech)  Tue. March 20th, 2018 11:30 am12:30 pm 
Unification from Scattering Amplitudes 
John Beacom (The Ohio State University)  Tue. March 6th, 2018 11:30 am12:30 pm 
A New Era for Solar Neutrinos 
Lindley Winslow (MIT)  Wed. February 28th, 2018 1:30 pm2:00 pm 
First Results from CUORE: Majorana Neutrinos and the Search for Neutrinoless DoubleBeta Decay 
Richard Ruiz (IPPPDurham, UK)  Tue. February 20th, 2018 11:30 am12:30 am 
LeftRight Symmetry: At the Edges of Phase Space and Beyond The LeftRight Symmetric model (LRSM) remains one of the best motivated completions of the Standard Model of Particle Physics. Thus far, however, data from the CERN Large Hadron Collider (LHC) tell us that new particles, if they are still accessible, must be very heavy and/or very weakly coupled. Interestingly, these regions of parameter space correspond to collider signatures that are qualitatively and quantitatively different from those developed in preLHC times. We present several new LRSM collider signatures for these parameter spaces and show a greatly expanded discovery potential at the 13 TeV LHC and hypothetical future 100 TeV very large hadron collider. 
Andrew J. Long (Kavli Institute for Cosmological Physics, University of Chicago)  Tue. February 13th, 2018 11:30 am12:30 am 
Testing baryons from bubbles with colliders and cosmology Continue reading… Andrew J. Long (Kavli Institute for Cosmological Physics, University of Chicago) 
Ayres Freitas (University of Pittsburgh)  Tue. February 6th, 2018 11:30 am12:30 am 
Radiative Corrections in Universal Extra Dimensions Universal extra dimensions is an interesting extension of the Standard Model 
David McKeen (University of Pittsburgh)  Tue. January 30th, 2018 11:30 am12:30 am 
Neutrino Portal Dark Matter Dark matter that interacts with the standard model (SM) through the “neutrino portal” is a possibility that is relatively less well studied than other scenarios. In such a setup, the dark matter communicates with the SM primarily through its interactions with neutrinos. In this talk, I will motivate neutrino portal dark matter and discuss some new tests of this possibility. 
Anders Johan Andreassen (Harvard University)  Tue. January 23rd, 2018 11:30 am12:30 pm 
Tunneling in Quantum Field Theory and the Ultimate Fate of our Universe One of the most concrete implications of the discovery of the Higgs boson is that, in the absence of physics beyond the standard model, the longterm fate of our universe can now be established through precision calculations. Are we in a metastable minimum of the Higgs potential or the true minimum? If we are in a metastable vacuum, what is its lifetime? To answer these questions, we need to understand tunneling in quantum field theory.This talk will give an overview of the interesting history of tunneling rate calculations and all of its complications in calculating functional determinants of fluctuations around the bounce solutions. Continue reading… Anders Johan Andreassen (Harvard University) 
Dragan Huterer (U. Michigan)  Fri. December 1st, 2017 12:45 pm1:45 pm 
title and abstract tba 
Arthur Kosowsky (Pittsburgh)  Tue. November 28th, 2017 11:30 am12:30 pm 
title and abstract tba 
Simone Aiola (Princeton)  Tue. November 14th, 2017 11:30 am12:30 pm 
Cosmology with ACTPol and AdvACT The bolometric polarimeter at the focal plane of the Atacama Cosmology Telescope allows us to map the Cosmic Microwave Background (CMB) with high signaltonoise both in temperature and polarization. In this talk, I will present the datareduction pipeline, highlighting the importance of making maximumlikelihood unbiased CMB maps. I will show the twoseason ACTPol cosmological results presented in Louis et al. (2017), Sherwin et al. (2017), and Hilton et al. (2017) and describe the current effort to finalize the analysis of the ACTPol dataset. I will conclude with preliminary results from the ongoing AdvACT survey, 
James Bonifacio (Oxford and CWRU)  Tue. October 31st, 2017 11:30 am12:30 pm 
Title: Amplitudes for massive spinning particles 
Lloyd Knox (UC Davis)  Tue. October 17th, 2017 11:30 am12:30 pm 
The Standard Cosmological Model: A Status Report Overall, the standard cosmological model has enjoyed enormous empirical success. But there are a number of indicators that we might be missing something. These include the largescale cosmic microwave background (CMB) “anomalies”, and two to three sigma discrepancies between cosmological parameters derived from larger angular scales of the CMB vs. smaller angular scales, CMB lensing potential reconstruction vs. CMB power spectra, data from the Planck satellite vs. data from the South Pole Telescope, and CMBcalibrated predictions for the current rate of expansion vs. more direct measurements. I will introduce the standard cosmological model, 
Rachel Bezanson (Pittsburgh)  Tue. October 10th, 2017 11:30 am12:30 pm 
Title: The Surprisingly Complex Lives of Massive Galaxies 
Tiziana Di Matteo (Carnegie Mellon)  Tue. September 26th, 2017 11:30 am12:30 pm 
The next massive galaxy and quasar frontier at the Cosmic Dawn Many of the advances in our understanding of cosmic structure have come 
Laura Gladstone (CWRU)  Tue. September 19th, 2017 11:30 am12:30 pm 
Neutrinos: cool, cold, coldest 
Liang Wu, University California Berkeley, MPPL2,Giant nonlinear optical responses in Weyl semimetals  Tue. September 12th, 2017 11:30 pm12:30 pm 
Giant nonlinear optical responses in Weyl semimetals Recently Weyl quasiparticles have been observed in transition metal monopnictides (TMMPs) such as TaAs, a class of noncentrosymmetric materials that heretofore received only limited attention. The question that arises now is whether these materials will exhibit novel, enhanced, or technologically applicable properties. The TMMPs are polar metals, a rare subset of inversion breaking crystals that would allow spontaneous polarization, were it not screened by conduction electrons. Despite the absence of spontaneous polarization, polar metals can exhibit other signatures, most notably secondorder nonlinear optical polarizability, leading to phenomena such as secondharmonic generation (SHG). 
Gabriela Marques, National Observatory of Rio de Janeiro and CWRU  Tue. September 5th, 2017 11:30 am12:30 pm 
title and abstract tba Continue reading… Gabriela Marques, National Observatory of Rio de Janeiro and CWRU 
Sarah Shandera (Penn State)  Tue. May 9th, 2017 11:00 am12:00 pm 
Cosmological open quantum systems Our current understanding of the universe relies on an inherently quantum origin for the rich, inhomogeneous structure we see today. Inflation (or any of the alternative proposals for the primordial era) easily generates a universe exponentially larger than what we can observe. In other words, the modes that are observationally accessible make up an open quantum system. I will discuss what we might learn by thinking about the universe in this way, even though the quantum structure is probably not observable. 
Ema Dimastrogiovanni (CWRU)  Tue. April 25th, 2017 11:00 am12:00 pm 
Primordial gravitational waves: Imprints and search Discussed will be some interesting scenarios for the generation of gravitational waves from inflation and the characteristic imprints we can search with upcoming cosmological observations. 
Matthew Johnson (Perimeter Institute)  Tue. April 18th, 2017 11:00 am12:00 pm 
Mapping Ultra Large Scale Structure Anomalies in the CMB on large angular scales could find an explanation in terms of preinflationary physics or intrinsic statistical anisotropies. However, due to cosmic variance it is difficult to conclusively test many of these ideas using the primary cosmic microwave background (CMB) alone. In this talk, I will outline a program to place stringent observational constraints on theories that predict ultralarge scale structure or statistical anisotropies using the secondary CMB (the Sunyaev Zel’dovich effect, polarization form the postreionization era, lensing, etc.) and tracers of largescale structure. These methods will become accessible with nextgeneration CMB experiments and planned galaxy surveys. 
David Chuss (Villanova)  Tue. April 11th, 2017 11:00 am12:00 pm 
The Cosmology Large Angular Scale Surveyor (CLASS) Precise observations of the cosmic microwave background have played a leading role in the development of the LCDM model of cosmology, which has been successful in describing the universe’s energy content and evolution using a mere six parameters. With this progress have come hints that the universe underwent an inflationary epoch during its infancy. Cosmic inflation is predicted to produce a background of gravitational waves that would imprint a distinct polarized pattern on the cosmic microwave background (CMB). Measurement of this polarized signal would provide the first direct evidence for inflation and would provide a means to study physics at energy scales around the predicted GUT scale. 
Donghui Jeong (Penn State)  Tue. April 4th, 2017 11:00 am12:00 pm 
Nonlinearities in largescale structure: Induced gravitational waves, nonlinear galaxy bias I will present my recent work on nonlinearities in largescale structures of the Universe. For the first part, I will discuss the gauge dependence of the scalarinduced tensor perturbations and its implication on searching the primordial gravitational wave signature from the largescale structure. For the second part of the talk, I will give a brief overview of the recent review on largescale galaxy bias (Desjacques, Jeong & Schmidt, 1611.09787) that contains a complete expression for the perturbative bias expansion that must hold on large scales. 
Ben Monreal (CWRU)  Tue. March 28th, 2017 11:00 am12:00 pm 
Nuclei, neutrinos, and microwaves: searching for the neutrino mass in tritium decay When Enrico Fermi published his theory of beta decay in 1934—what we now call the weak interaction—he suggested how experiments could measure the neutrino mass: by looking at the shape of the energy distribution of beta decay electrons. We’re still doing exactly that! I will talk about the state of the art of tritium beta decay electron measurements: the KATRIN experiment, which starts science runs soon with a molecular tritium source towards sub0.3 eV sensitivity; and the Project 8 experiment, which aims to develop a future atomic tritium experiment sensitive to neutrino masses below 0.05 eV. 
Mauricio Bustamante (CCAPP, OSU)  Tue. March 21st, 2017 11:00 am12:00 pm 
Prospecting for new physics with highenergy astrophysical neutrinos Highenergy astrophysical neutrinos, recently discovered by IceCube, are fertile ground to look for new physics. Due to the high neutrino energies — tens of TeV to a few PeV — we can look for new physics at unexplored energies. Due to their cosmologicalscale baselines — Mpc to Gpc — tiny newphysics effects, otherwise unobservable, could accumulate and become detectable. Possibilities include neutrino decay, violation of fundamental symmetries, and novel neutrinoneutrino interactions. I will show that the spectral features, angular distribution, and flavor composition of neutrinos could reveal the presence of new physics and, 
Robert Caldwell (Dartmouth)  Tue. March 7th, 2017 11:00 am12:00 pm 
Cosmology with FlavorSpace Locked Fields We present new models of cosmic acceleration built from a cosmological SU(2) field in a flavorspace locked configuration. We show that such fields are gravitationally birefringent, and absorb and reemit gravitational waves through the phenomenon of gravitational wave — gauge field oscillations. As a result, a cosmological SU(2) field leaves a unique imprint on both longwavelength gravitational waves of primordial origin as well as high frequency waves produced by astrophysical sources. We show that these effects may be detected in the future using the cosmic microwave background and gravitational wave observatories. 
Matthew Baumgart (Perimeter Institute)  Tue. February 14th, 2017 11:00 am12:00 pm 
De Sitter Wavefunctionals and the Resummation of Time The holographic RG of AntiDe Sitter gives a powerful clue about the underlying AdS/CFT correspondence. The question is whether similar hints can be found for the heretofore elusive holographic dual of De Sitter. The framework of stochastic inflation uses nonperturbative insight to tame bad behavior in the perturbation series of a massless scalar in DS at late times. Remarkably, this fully quantum system loses phase information and exhibits semiclassical dynamics in the leading approximation. Recasting this as a “resummation of time,” we wish understand whether the distributions that result can be thought of as an attractive UV fixed point of a theory living on a spacelike slice of DS. 
Andrew Zentner (Pittsburgh)  Tue. February 7th, 2017 11:00 am12:00 pm 
The PowerLaw Galaxy Correlation Function For nearly 40 years, the galaxygalaxy correlation function has been used to characterize the distribution of galaxies on the sky. In addition, the galaxy correlation function has been recognized as very nearly powerlaw like despite the fact that it is measured over a wide range of scales. In particular, the galaxy correlation function has been measured on very large scales (~30 Mpc), on which density fluctuations are mild and perturbative approaches are appropriate, as well as very small scales (~0.1 Mpc), on which the evolution of the density field of the universe is quite nonlinear. 
Kurt Hinterbichler (CWRU)  Tue. January 31st, 2017 11:00 am12:00 pm 
Partially Massless HigherSpin Gauge Theory The higher spin theories of Vasiliev are gauge theories that contain towers of massless particles of all spins, and are thought to be UV complete quantum theories that include gravity, describing physics at energies much higher than the Planck scale. We discuss Vasilievlike theories that include towers of massless and partially massless fields. These massive towers can be thought of as partially Higgsed versions of Vasiliev theory. The theory is a fully nonlinear theory which contains partially massless modes, is expected to be UV complete, includes gravity, and can live on dS as well as AdS. 
Lucile Savary (MIT) — Michelson Postdoctoral Prize Lecturer  Tue. January 24th, 2017 11:00 am12:00 pm 
Quantum Spin Ice Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice compounds, such as “artificial magnetostatics.” In this talk, I will address the effects of terms which induce quantum dynamics in a range of models close to the classical spin ice point. Specifically, I will focus on Coulombic quantum spin liquid states, in which a highly entangled massive superposition of spin ice states is formed, allowing for dramatic quantum effects: emergent quantum electrodynamics and its associated emergent electric and magnetic monopoles. I will also discuss how random disorder alone may give rise to both a quantum spin liquid and a Griffiths Coulombic liquid–a Bose glasslike phase. Continue reading… Lucile Savary (MIT) — Michelson Postdoctoral Prize Lecturer 
Lucile Savary (MIT) — Michelson Postdoctoral Prize Lecturer  Mon. January 23rd, 2017 4:15 pm5:15 pm 
A New Type of Quantum Criticality in the Pyrochlore Iridates The search for truly quantum phases of matter is one of the center pieces of modern research in condensed matter physics. Quantum spin liquids are exemplars of such phases. They may be considered “quantum disordered” ground states of spin systems, in which zero point fluctuations are so strong that they prevent conventional magnetic long range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive manybody entanglement, of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, Continue reading… Lucile Savary (MIT) — Michelson Postdoctoral Prize Lecturer 
Claire Zukowski (Columbia U.)  Tue. January 17th, 2017 11:00 am12:00 pm 
Emergent de Sitter Spaces from Entanglement Entropy A theory of gravity can be holographically “emergent” from a field theory in one lower dimension. In most known cases, the gravitational theory lives in an asymptotically anti de Sitter spacetime with very different properties from our own de Sitter universe. I will introduce a second emergent “auxiliary” spacetime constructed from the entanglement entropy of subregions in the field theory. In 2d, this auxiliary space is either a de Sitter spacetime or its various identifications. The modular Hamiltonian, which encodes information about the entanglement properties of a state in the field theory, 
Beatrice Bonga (Penn State)  Tue. December 6th, 2016 11:00 am12:00 pm 
The closed universe and the CMB 
YiZen Chu (University of Minnesota, Duluth)  Tue. November 29th, 2016 11:00 am12:00 pm 
Causal Structure Of Gravitational Waves In Cosmology Despite being associated with particles of zero rest mass, electromagnetic and gravitational waves do not travel solely on the null cone in generic curved spacetimes. (That is, light does not always propagate on the light cone.) This insidethenullcone propagation of waves is known as the tail effect, and may have consequences for the quantitative prediction of gravitational waves from both inspiraling binary compact stars/black holes and “ExtremeMassRatio” systems. The latter consists of compact objects orbiting, and subsequently plunging into, the horizons of supermassive black holes astronomers now believe reside at the center of many (if not all) galaxies — Continue reading… YiZen Chu (University of Minnesota, Duluth) 
Daniel Winklehner (MIT)  Tue. November 22nd, 2016 11:00 am12:00 pm 
On the development and applications of highintensity cyclotrons in neutrino physics and energy research The cyclotron is one of, if not the, most versatile particle accelerator ever conceived. Based on the (then revolutionary) principle of cyclic acceleration using RF frequency alternating voltage on a socalled dee, while particles are forced into circular orbits by a strong vertical magnetic field, many varieties have been developed in the 84 years since their invention by Lawrence in 1932. The fact that they are still around and oftentimes in a form that has been proposed many years ago is a testimony to their robustness and versatility. 
Austin Joyce (Kavli Institute for Cosmological Physics, Chicago)  Tue. November 15th, 2016 11:00 am12:00 pm 
Soft limits, asymptotic symmetries, and inflation in Flatland There has been much recent interest in soft limits, both of flat space SMatrix elements and of cosmological correlation functions. I will discuss the physics probed by soft limits in cosmology and explore the connection between cosmological soft theorems and asymptotic symmetries. These ideas will be illustrated by a simple example: inflation in 2+1 dimensions. Continue reading… Austin Joyce (Kavli Institute for Cosmological Physics, Chicago) 
Rachel Rosen (Columbia University)  Tue. November 8th, 2016 11:00 am12:00 pm 
NonSingular Black Holes in Massive Gravity When starting with a static, sphericallysymmetric ansatz, there are currently two types of black hole solutions in massive gravity: (i) exact Schwarzschild solutions which exhibit no Yukawa suppression at large distances and (ii) solutions which contain coordinateinvariant singularities at the horizon. In this talk, I will present new black hole solutions which have a nonsingular horizon and can potentially be matched to Yukawa asymptotics at large distances. These solutions recover Schwarzschild black holes in the massless limit and are thus observationally viable.” 
Tao Han (University of Pittsburgh)  Fri. November 4th, 2016 11:00 am12:00 pm 
Splitting and showering in the electroweak sector We derive the splitting functions for the Standard Model electroweak sector at high energies, including the fermions, massive gauge bosons and the Higgs boson. We study the class of functions with the “ultracollinear” behavior that is a consequence of the electroweak symmetry breaking. We stress the leadingorder corrections to the “Goldstoneboson Equivalence Theorem”. We propose a novel gauge, dubbed the “Goldstone Equivalence Gauge” that practically as well as conceptually disentangles the effects from the Goldstone bosons and the gauge fields. We also demonstrate a practical scheme for multiple electroweak boson production via showering at high energies. 
Sean Bryan (Arizona State University)  Tue. October 18th, 2016 11:00 am12:00 pm 
Cosmology with Millimeter Wave LEKIDs: CMB, Spectroscopy, and Imaging with TolTEC Millimeterwave cameras offer a unique window on the history and dynamics of the universe. Observations of CMB polarization are setting new constraints on cosmic inflation and gravitational lensing. Imaging and spectroscopy in millimeter waves measures individual galaxies through their bolometric flux as well as C+/CO line strengths. In this talk, I will discuss aluminum LEKID detectors that can be used for all of these applications. The feed structures are directly machined in metal, and the detectors are made with a singlelayer process. Lab measurements show that the 150 GHz dualpolarization detectors have photonnoise limited sensitivity, 
Stacy McGaugh (CWRU Astronomy) [note time]  Tue. October 11th, 2016 11:00 am12:00 pm 
*Note that the seminar may be pushed back to 11:3012:30. The Radial Acceleration Relation in Rotationally Supported Galaxies We report a correlation between the radial acceleration traced by rotation curves and that predicted by the observed distribution of baryons. The same relation is followed by 2693 points in 153 galaxies with very different morphologies, masses, sizes, and gas fractions. The correlation persists even when dark matter dominates. Consequently, the dark matter contribution is fully specified by that of the baryons. The observed scatter is small and largely dominated by observational uncertainties. This radial acceleration relation is tantamount to a natural law for rotating galaxies. Continue reading… Stacy McGaugh (CWRU Astronomy) [note time] 
Henriette Elvang (University of Michigan)  Tue. September 20th, 2016 11:00 am12:00 pm 
Scattering amplitudes and soft theorems I will give a pedagogical introduction to the spinor helicity formalism which provides a very efficient tool for studies of onshell scattering amplitudes in 4 dimensions. The power of this formalism will be demonstrated in a new analysis of soft photon and soft graviton theorems. 
Bob Brown (CWRU)  Tue. September 13th, 2016 11:00 am12:00 pm 
Understanding ColorKinematics Duality with a New Symmetry: From Radiation Zeros to BCJ I discuss a new set of symmetries obeyed by treelevel gaugetheory amplitudes involving at least one gluon. The symmetry acts as a momentumdependent shift on the color factors of the amplitude. Using our previous development of radiation vertex expansions, we prove the invariance under this colorfactor shift of the n gluon amplitude, and in fact for any amplitudes involving at least one massless gauge boson and any number of massless or massive particles in arbitrary representations of the gauge group with spin zero, 
Bryan Lynn (CWRU and University College London)  Tue. September 6th, 2016 11:00 am12:00 pm 
Raymond Stora’s last work Continue reading… Bryan Lynn (CWRU and University College London) 
Excursion Sets, Peaks and Other Creatures: Improved Analytical Models of LSS – Marcello Musso  Tue. May 3rd, 2016 11:30 am12:30 pm 
I will present recent developments in analytical methods to predict abundance, clustering, velocities and bias of Dark Matter halos. In the standard analytical approach, halos are identified either with sufficiently high peaks of the initial matter density field, or with the largest spheres enclosing a sufficiently high density. I will revise the physical assumptions leading to this standard picture, and show how a careful statistical implementation of the model of collapse (even in the simple spherically symmetric case) leads to a surprisingly rich structure. This allows to make simple – yet remarkably accurate – analytical predictions for halo statistics, a necessary ingredient on the road to precision cosmology. 
Do We Understand the Universe? – Raul Jimenez  Tue. April 26th, 2016 11:30 am12:30 pm 
Observations of the cosmos provide a valuable tool to study the fundamental laws of nature. The future generation of astronomical surveys will provide data for a sizeable fraction of the observable sky. This rich data set should provide the means to answer fundamental questions: what are the laws of physics at high energies in the Early Universe? What is the nature of neutrinos? What is dark matter? What is dark energy? Why are there baryons at all? In this talk I will review the current status, provide a roadmap for future prospects and discuss in detail how we might approach the task of extracting information from the sky to answer the above questions. Continue reading… Do We Understand the Universe? – Raul Jimenez 
New Directions in Bouncing Cosmologies – Anna M. Ijjas  Tue. April 19th, 2016 11:30 am12:30 pm 
In this talk, I will discuss novel ideas to smooth and flatten the universe and generate nearly scaleinvariant perturbations during a contracting phase that precedes a cosmological bounce. I will also present some recent work on the possibility of having wellbehaved nonsingular bounces. Continue reading… New Directions in Bouncing Cosmologies – Anna M. Ijjas 
Beyond Precision Cosmology – Licia Verde  Tue. April 5th, 2016 11:30 am12:30 pm 
The avalanche of data over the past 1020 years has propelled cosmology into the “precision era”. The next challenge cosmology has to meet is to enter the era of accuracy. Because of the intrinsic nature of studying the Cosmos and the sheer amount of data available and coming, the only way to meet these challenges is by developing suitable and specific statistical techniques. The road from precision Cosmology to accurate Cosmology goes through statistical Cosmology. I will outline some open challenges and discuss some specific examples. 
New Approaches to Dark Matter – Justin Khoury  Tue. March 29th, 2016 11:30 am12:30 pm 
In this talk I will discuss a novel theory of superfluid dark matter. The scenario matches the predictions of the LambdaCDM model on cosmological scales while simultaneously reproducing the MOdified Newtonian Dynamics (MOND) empirical success on galactic scales. The dark matter and MOND components have a common origin, as different phases of a single underlying substance. This is achieved through the rich and wellstudied physics of superfluidity. The framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): due to the higher velocity dispersion in clusters, and correspondingly higher temperature, the DM in clusters is either in a mixture of superfluid and normal phases, Continue reading… New Approaches to Dark Matter – Justin Khoury 
Calibration of the Advanced Laser Interferometer Gravitationalwave Observatory (LIGO) Detectors – Madeline Wade  Tue. March 22nd, 2016 11:30 am12:30 pm 
Calibration is the critical link between the LIGO detectors and searches for gravitationalwave signals in LIGO data. The LIGO calibration effort involves constructing the external strain incident on each LIGO detector from the digitized readout of the LIGO photodetectors. The essential steps in calibration are the development of accurate models of the LIGO detectors, the digitization of these models, and the application of the calibration models to construct the external strain. The Advanced LIGO era has brought new complexities in accurately modeling the LIGO detectors as well as the challenge of producing calibrated external strain data in lowlatency. This talk will give an overview of the Advanced LIGO calibration procedure, 
New Probes of Largescale CMB Anomalies – Simone Aiola  Tue. March 15th, 2016 11:30 am12:30 pm 
Inflation prescribes a homogenous and isotropic universe on large scales, and it generates density fluctuations which are expected to be spatially correlated over the whole Hubble volume. Such fundamental predictions have been tested with current Cosmic Microwave Background (CMB) data and found to be in tension with our — remarkably simple — ΛCDM model. Is it just a random fluke or a fundamental issue with the present model? In this talk, I will present new possibilities of using CMB polarization as a probe of the measured suppression of the largescale temperature correlation function. I will also discuss the viability of using this new technique with present and upcoming data. Continue reading… New Probes of Largescale CMB Anomalies – Simone Aiola 
Joining Forces Against the Dark Side of the Universe: The Cosmic Microwave Background and the Large Scale Structure – Shirley Ho  Fri. March 4th, 2016 12:30 pm1:30 pm 
Despite tremendous recent progress, gaps remain in our knowledge of our understanding of the Universe. For example, we have yet pinned down the properties of dark energy, nor have we confirmed Einstein’s theory of Gravity at the largest scales. Current and upcoming large sky surveys of the cosmic microwave background, large scale structure in galaxies, quasars, lymanalpha forest and 21cm presents us with the best opportunity to understand various mysterious properties of the Universe and its underlying principles. I will review recent results from the Baryon Oscillations Spectroscopic Survey (BOSS). These results have demonstrated the feasibility of high precision Baryon Acoustic Oscillation (BAO) measurement, 
Testing Early Universe Physics with Upcoming Observations – Emanuela Dimastrogiovanni  Wed. February 10th, 2016 12:30 pm1:30 pm 
Cosmology has seen tremendous progress thanks to precision measurements and is bound to greatly benefit from upcoming Large Scale Structure and Cosmic Microwave Background data. I will point out a number of interesting directions. In particular, I discuss how the microphysics of inflation may be tested in galaxy surveys through “fossil” signatures originating from squeezed primordial correlations. I further elaborate on the constraining power of CMB spectral distortions on smallscale cosmological fluctuations and on particle decays in the very early Universe in relation to reheating. I also describe some of the possible constraints on inflation and reheating from future Bmode observations. 
New Paradigm for Physics Beyond the Standard Model – Pavel Fileviez Perez  Tue. February 9th, 2016 11:30 am12:30 pm 
The great desert hypothesis in particle physics defines the relation between the electroweak scale and the high scale where an unified theory could describes physics. In this talk we review the desert hypothesis and discuss the main experimental constraints from rare decays. We present a new class of theories for the TeV scale where the desert hypothesis is not needed. In this context one predicts the existence of new particles with baryon and lepton numbers called leptobaryons. The implications for cosmology, collider experiments and the unification of forces are discussed. Continue reading… New Paradigm for Physics Beyond the Standard Model – Pavel Fileviez Perez 
Cosmology from the Megaparsec to the Micron – Amol Upadhye  Fri. February 5th, 2016 12:30 pm1:30 pm 
Two major challenges for cosmology over the next decade are to characterize the dark energy responsible for the cosmic acceleration and to weigh the neutrinos, the only Standard Model particles whose masses are not yet known. Part I of the presentation describes my ongoing work to understand the effects of massive neutrinos and evolving dark energy on the formation of largescale structure. I include both effects in a redshiftspace generalization of TimeRG perturbation theory, and establish its validity through comparison to Nbody simulations. In Part II I discuss my previous work using stars and laboratory experiments to search for couplings between dark energy and Standard Model particles. Continue reading… Cosmology from the Megaparsec to the Micron – Amol Upadhye 
Massive and Partially Massless Gravity and Higher spins – Kurt Hinterbichler  Tue. February 2nd, 2016 11:30 am12:30 pm 
On de Sitter space, there exists a special value for the mass of a graviton for which the linear theory propagates 4 rather than 5 degrees of freedom, known as a partially massless graviton. If a satisfactory nonlinear version of the theory can be found and coupled to known matter, it would have interesting properties and could solve the cosmological constant problem. I will review attempts at constructing such a theory and some nogo’s, and will describe a Vasilievlike theory containing a tower of partially massless higher spins. Continue reading… Massive and Partially Massless Gravity and Higher spins – Kurt Hinterbichler 
Testing Eternal Inflation – Matthew Johnson  Tue. December 8th, 2015 11:30 am12:30 pm 
The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an everexpanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. In this talk I will summarize recent work providing a quantitative connection between the scalar field lagrangian underlying eternal inflation and the observational signature of bubble collisions. I will also summarize existing constraints and forecasts for future searches using CMB and LSS, as well as discuss the general relevance of this work for assessing finetuning problems in inflationary cosmology. Continue reading… Testing Eternal Inflation – Matthew Johnson 
Bigravity: Dead or Alive? – Adam Solomon  Tue. December 1st, 2015 11:30 am12:30 pm 
Spurred in large part by the discovery of the accelerating universe, recent years have seen tremendous advances in our understanding of alternatives to general relativity, particularly in the largedistance and lowcurvature régimes. Looming large in this field is the recent development of a ghostfree, nonlinear theory of massive gravity and multimetric gravity (or equivalently, theories of interacting gravitons), which had proven elusive for the better part of seven decades. Nevertheless, both massive gravity and its generalization to a bimetric theory have run into potentiallydeadly problems in the search for viable, selfaccelerated cosmologies. I will summarize some of these issues, and then discuss possible ways out. 
Bigravity from DGP Twobrane Model – Yasuho Yamashita  Wed. October 28th, 2015 12:30 pm1:30 pm 
We discuss whether or not bigravity theory can be embedded into the braneworld setup. As a candidate, we consider DvaliGabadadzePorrati twobrane model. We will show that we can construct a ghost free model whose low energy spectrum is composed of a massless graviton and a massive graviton with a small mass, fixing the brane separation with the GoldbergerWise radion stabilization. We also show that there is two branches: the normal branch is stable and the selfaccelerating branch is inevitably unstable, and discuss the condition for the normal branch. Next, we consider DGP twobrane model without the radion stabilization to discuss how the ghost free bigravity coupled with a single scalar field can be derived from a braneworld setup. Continue reading… Bigravity from DGP Twobrane Model – Yasuho Yamashita 
The Instability of de Sitter Space and Dynamical Dark Energy: Massless Degrees of Freedom from the Conformal Anomaly in Cosmology – Emil Mottola  Tue. October 27th, 2015 11:30 am12:30 pm 
Global de Sitter space is unstable to particle creation, even for a massive free field theory with no selfinteractions. The BunchDavies state is a definite phase coherent superposition of particle and antiparticle solutions in both the asymptotic past and future, and therefore is not a true vacuum state. In the closely related case of particle creation by a constant, uniform electric field, a time symmetric state analogous to the de Sitter invariant one is constructed, which is also not a stable vacuum state. The conformal anomaly plays a decisive role in the growth of perturbations and de Sitter symmetry breaking. 
Perspectives on WIMP Dark Matter – Pearl Sandick  Tue. October 13th, 2015 11:30 am12:30 pm 
The question of the identity of dark matter remains one of the most important outstanding puzzles in modern physics. Weakly Interacting Massive Particles (WIMPs) have long been the frontrunner dark matter candidate, with the supersymmetric neutralino serving as the canonical WIMP. In this talk, I’ll discuss recent results relevant to the search for dark matter, supersymmetric and otherwise, and highlight the spectrum of theoretical and phenomenological approaches to its study. From fundamental constructions to simplified models and effective theories, each approach plays a specific role in furthering our understanding and allowing us to evaluate the prospects for discovery of dark matter. Continue reading… Perspectives on WIMP Dark Matter – Pearl Sandick 
The Standard Model of Particle Physics via NonCommutative Geometry – Latham Boyle  Fri. October 9th, 2015 12:30 pm1:30 pm 
I will introduce Connes’ notion of noncommutative geometry, and explain how it offers a novel geometric perspective on certain otherwise unexplained features of the standard model of particle physics, and a more restrictive framework than effective field theory for exploring physics beyond the standard model. I will also explain the main ideas behind a new reformulation of NCG which has certain key mathematical and physical advantages over Connes’ traditional “spectral triple” formulation. In this reformulation, the traditional NCG axioms are considerably simplified and unified; a number of problematic issues in the traditional NCG construction of the standard model are fixed; Continue reading… The Standard Model of Particle Physics via NonCommutative Geometry – Latham Boyle 
An Anisotropic Universe Due to Dimensionchanging False Vacuum Decay – James Scargill  Tue. September 29th, 2015 11:30 am12:30 pm 
In this talk I will consider the observational consequences of models of inflation after false vacuum decay in which the parent vacuum has a smaller number of large dimensions than our current vacuum. After introducing and briefly discussing in general the topic of inflation after false vacuum, I will then explain how such events can occur which change the number of large dimensions and lead to an anisotropic universe. The effects on the CMB of anisotropy at late times might be expected to render irrelevant the effects of primordial anisotropy, however after showing how to properly deal with the latter I will demonstrate how for the tensor perturbation modes the primordial effects are much larger than expected and can in fact be dominant. 
Prospects for Measuring the Neutronstar Equation of State with Advanced Gravitationalwave Detectors – Leslie Wade  Tue. September 22nd, 2015 11:30 am12:30 pm 
It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitationalwave detectors, such as the two Laser Interferometer Gravitationalwave Observatories (LIGO) and the Virgo interferometer. Arguably the most important source for groundbased interferometers are coalescing binary neutron stars. Following the detection of such a system, a more detailed followup analysis will seek to measure certain properties of the component neutron stars, such as their masses and/or spin configurations. In particular, it has been shown that the gravitational waves emitted by binary neutron stars carry information about the neutronstar equation of state. In this talk, 
Gravitational Signals from Noise in the Hubble Diagram – Edward Macaulay  Tue. May 5th, 2015 11:30 am12:30 pm 
Understanding the nature of the dark universe requires precise measurements of the background expansion history, and also the growth rate of density fluctuations. In this talk, I’ll consider both regimes with supernova lensing for the OzDES spectroscopic survey – which is measuring the redshifts of hundreds of supernova and thousands of galaxies identified by the Dark Energy Survey. I’ll start by reviewing the more established method of growth rate measurements with Redshift Space Distortions, and discuss possible tension between RSDs and expectations from Planck CMB measurements. I’ll then consider how OzDES can place novel constraints on the growth rate and amplitude of density fluctuations by correlating noise in the supernova Hubble diagram with the gravitational effects of lensing and peculiar velocities expected from the observed density field. Continue reading… Gravitational Signals from Noise in the Hubble Diagram – Edward Macaulay 
The Race for the Highest Energy Neutrinos in the Universe – Patrick Allison  Tue. April 7th, 2015 11:30 am12:30 pm 
In 1969, Berezinsky and Zatsepin predicted a flux of ultrahigh energy (greater than 1 EeV) neutrinos due to cosmic ray interactions with the cosmic microwave background. These ‘cosmogenic’ BZ neutrinos are virtually “guaranteed” – barring extreme changes in either fundamental physics or our understanding of the source of cosmic rays, these neutrinos must exist. Detecting these neutrinos is extremely challenging, due to their incredibly low flux – however, recent experiments are approaching the sensitivity needed to finally make a detection. Here, I will talk about several of these existing and upcoming experiments, including the ANITA and EVA balloonborne detectors, and the ARA experiment, Continue reading… The Race for the Highest Energy Neutrinos in the Universe – Patrick Allison 
Macro Dark Matter – David Jacobs  Tue. March 31st, 2015 11:30 am12:30 pm 
Dark matter is a vital component of the current best model of our universe, LambdaCDM. There are leading candidates for what the dark matter could be (e.g. weaklyinteracting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyondtheStandardModel physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. I will discuss the general class of dark matter candidates with characteristic masses and interaction crosssections characterized in units of grams and square centimeters, respectively — 
Wave Turbulence in Preheating – Henrique de Oliveira  Tue. March 24th, 2015 11:30 am12:30 pm 
We have studied the nonlinear preheating dynamics of several inflationary models. They include nonminimally coupled scalar fields and twofields models. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since the matter contents are fields instead of usual fluids. Turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the scalar fields. We present relevant aspects of wave turbulence and presented the effective equation of state at the thermalize phase. Continue reading… Wave Turbulence in Preheating – Henrique de Oliveira 
Mapping New Physics with the Cosmic Microwave Background – Jeff McMahon  Mon. February 23rd, 2015 11:30 am12:30 pm 
The Cosmic Microwave Background (CMB) is the afterglow of the big bang and the oldest light in the universe that can be observed. Faint signals in the pattern of the CMB provide information about the physics that govern the very early universe and the growth of large scale structure. Thus, precision measurements of the CMB provide unique views on ultra high energy physics (inflation); pressing mysteries including dark energy and dark matter; and traditional particle physics questions such as the sum of the neutrino masses. In this talk I present the state of the CMB field and highlight the Atacama Cosmology Telescope Polarimeter (ACTPol) and it successor Advanced ACTPol (AdvACT). Continue reading… Mapping New Physics with the Cosmic Microwave Background – Jeff McMahon 
Optical Frequency Combs and Precision Spectroscopy – Jason Stalnaker  Tue. February 17th, 2015 11:30 am12:30 pm 
Atomic spectroscopy has a long history of providing tests of fundamental physics. This tradition continues as the precision and accuracy of spectroscopic techniques improve. I will discuss the impact that the development of stabilized optical frequency combs has had on precision spectroscopy and describe an ongoing effort to study the atomic spectra of lithium at Oberlin College. Continue reading… Optical Frequency Combs and Precision Spectroscopy – Jason Stalnaker 
Numerical Relativity in Spherical Polar Coordinates – Thomas W. Baumgarte  Thu. February 12th, 2015 11:30 am12:30 pm 
Numerical relativity simulations have made dramatic advances in recent years. Most of these simulations adopt Cartesian coordinates, which have some very useful properties for many types of applications. Spherical polar coordinates, on the other hand, have significant advantages for others. Until recently, the new coordinate singularities in spherical polar coordinates have hampered the development of numerical relativity codes adopting such coordinates, at least in the absence of symmetry assumptions. With a combination of different techniques – a referencemetric formulation of the relevant equations, a proper rescaling of all tensorial quantities, and a partiallyimplicit RungeKutta method – we have been able to solve these problems. Continue reading… Numerical Relativity in Spherical Polar Coordinates – Thomas W. Baumgarte 
Is Clustering Dark Energy Nonlinear? The AP Resummation Approach – Stefano Anselmi  Tue. February 3rd, 2015 11:30 am12:30 pm 
In order to gain insights on the mysterious component driving the acceleration of the Universe the future surveys will measure with unprecedent precision the density power spectrum in the nonlinear range of scales and redshifts. On the theoretical hand those nonlinearities require a comparable computational level. This is a tremendous effort that see deployed numerical (Nbody), semianalytical and analytical investigations. I this context I will present a powerful analytical resummation scheme first developed for LCDM and very recently extended to the Clustering Quintessence scenario, i.e. quintessence models with vanishing speed of sound. The approach I will expose allows predictions at few percent level beyond the Baryon Acoustic Oscillations range of scales, 
Sterile Plus Active Neutrinos and Neutrino Oscillations – Leonard Kisslinger  Mon. January 26th, 2015 12:30 pm1:30 pm 
The talk will be based on recent neutrino oscillation experiments that have determined that there is almost certainly a sterile neutrino, with an estimate of the mixing angle. Continue reading… Sterile Plus Active Neutrinos and Neutrino Oscillations – Leonard Kisslinger 
New Accelerators for Neutrino Physics – Matt Toups  Tue. January 20th, 2015 11:30 am12:30 pm 
DAEδALUS is a proposed phased neutrino experiment, whose ultimate aim is to search for evidence of CP violation in the neutrino sector. The experiment will consist of several acceleratorbased modules that produce decayatrest neutrino beams located at three different distances from a single, large underground neutrino detector. Each of these modules will make use of a pair of lowcost, high power cyclotrons to accelerate an H2+ beam initially up to 60 MeV with a compact injector cyclotron and then ultimately up to 800 MeV with a separated sector superconducting cyclotron. These new lowcost, high power cyclotrons are motivated by industry needs and also open up new possibilities for searches for physics beyond the standard model with neutrinos. Continue reading… New Accelerators for Neutrino Physics – Matt Toups 
The Universe as a Cosmic String – Florian Niedermann  Tue. November 25th, 2014 11:30 am12:30 pm 
We are investigating modifications of general relativity that are operative at the largest observable scales. In this context, we are investigating the model of brane induced gravity in 6D, a higher dimensional generalization of the DGP model. As opposed to different claims in the literature, we have proven the quantum stability of the theory in a weakly coupling regime on a Minkowski background. In particular, we have shown that the Hamiltonian of the linear theory is bounded from below. This result opened a new window of opportunity for consistent modified Friedmann cosmologies. In our recent work it is shown that a brane with FRW symmetries necessarily acts as a source of cylindrically symmetric gravitational waves, Continue reading… The Universe as a Cosmic String – Florian Niedermann 
Imprints of the Standard Model in the Sky? – Daniel G. Figueroa  Tue. November 18th, 2014 11:30 am12:30 pm 
The existence of the Standard Model (SM) Higgs implies that a gravitational wave (GW) background is generated by the decay products of the Higgs, soon after the end of inflation. Theoretically, all Yukawa and SU(2)L gauge couplings of the SM are imprinted as features in the GW spectrum. However, in practice, the signal from the most strongly coupled species dominate, rendering inaccesible the information on the other species. This background could be used for inferring properties of particle physics, including beyond the SM, at energies way above the reach of LHC. To measure this background, however, new high frequency GW detection technology is required. Continue reading… Imprints of the Standard Model in the Sky? – Daniel G. Figueroa 
New Ideas for Dark Energy and Also for Dust Discrimination in Bmode Maps – Marc Kamionkowski  Fri. November 14th, 2014 12:30 pm1:30 pm 

Intergalactic Magnetic Fields – Tanmay Vachaspati  Tue. November 11th, 2014 11:30 am12:30 pm 
I will describe theoretical motivation for the existence of parity violating (helical) intergalactic magnetic fields and recent and growing observational evidence for such fields. Continue reading… Intergalactic Magnetic Fields – Tanmay Vachaspati 
Peaks and Troughs in Large Scale Structure – Ravi K. Sheth  Tue. November 4th, 2014 11:30 am12:30 pm 
I will reiew recent and substantial progress in modeling the cosmic web. This progress, which results from merging two different and decades old literature streams, leads to a number of new and interesting insights about how the biased tracers we will observe in the next generation of large scale structure datasets can better constrain cosmological models. Continue reading… Peaks and Troughs in Large Scale Structure – Ravi K. Sheth 
High Precision Cosmology with BAO Surveys: BOSS and Future 21cm BAO Surveys – HeeJong Seo  Fri. October 24th, 2014 12:30 pm1:30 pm 
The large scale structure of matter and galaxies contains important information on the evolution of the Universe. Baryon acoustic oscillations (BAO), which is one of the most promising large scale features, can provide an excellent standard ruler that enables us to measure the cosmological distance scales, and therefore dark energy properties. I would like to first discuss the ongoing joint analysis of BOSS galaxy and lya BAO results and, second, future 21cm BAO surveys focused on the effect of foregrounds. 
The Shape of the Electron, and Why It Matters – Amar Vutha  Tue. October 14th, 2014 11:30 am12:30 pm 
The universe, or at least the 5% of it that we understand, is described rather well by the Standard Model of particle physics. Yet even this nondark sector of the universe conceals a great mystery: // where has all the antimatter gone? // In this lecture, I will describe the problem and the best solution that we have for it. One of the crucial ingredients of that solution is the prediction of new sources of timereversal violation. The most sensitive probe of such timereversal violation is, oddly enough, to be found in small asymmetries in the shape of the electron’s charge distribution. Continue reading… The Shape of the Electron, and Why It Matters – Amar Vutha 
Precision Cosmology with Galaxy Surveys: Understanding Intrinsic Alignments and Redshiftspace Distortions – Jonathan A. Blazek  Fri. October 10th, 2014 12:30 pm1:30 pm 
Galaxy imaging and redshift surveys, designed to measure gravitational lensing and galaxy clustering, remain the most powerful probes of largescale structure. Such surveys constitute a significant fraction of current and nextgeneration projects in the cosmology community (e.g. DES, HSC, LSST, eBOSS, DESI, EUCLID, WFIRST). The statistical power of these experiments requires significantly improved understanding of astrophysical and observational effects. In this talk, I will focus on two important astrophysical processes which contribute systematic uncertainty but also contain a potential wealth of information. First, correlations in the intrinsic shapes and orientations of galaxies, termed “intrinsic alignments” (IA), are an important systematic in weak lensing. 
Healthy Theories Beyond Horndeski – Jerome Gleyzes  Wed. September 3rd, 2014 11:30 am12:30 pm 
In search for a candidate that could explain the current acceleration of the Universe, a lot of attention has been given recently to Galileon theories, or in their generalized form, Horndeski theories. They are interesting as they represent the most general scalar tensor theories that do not lead to equations of motion containing more than two derivatives. This restriction is generally thought to be of great importance, as generically, higher order derivatives lead to ghost instabilities. I will present a new class of scalar tensor theories that are broader than Horndeski and, as such, do bring higher order derivatives. However, Continue reading… Healthy Theories Beyond Horndeski – Jerome Gleyzes 
Interacting Spin2 Fields – Johannes Noller  Tue. September 2nd, 2014 11:30 am12:30 pm 
In this talk I will discuss some recent progress in our understanding of the spin2 sector, focussing on theories with two or more dynamical such fields. In particular I will highlight the existence of several dualities in such models (generalisations of `Galileon dualities’), their decoupling limit phenomenology as well as the form of their interactions with other matter fields. Continue reading… Interacting Spin2 Fields – Johannes Noller 
Recent Progress in LargeScale Structure – Roman Scoccimarro  Fri. May 9th, 2014 11:00 am12:00 pm 
I will discuss recent progress in the understanding of how to model galaxy clustering. While recent analyses have focussed on the baryon acoustic oscillations as a probe of cosmology, galaxy redshift surveys contain a lot more information than the acoustic scale. In extracting this additional information three main issues need to be well understood: nonlinear evolution of matter fluctuations, galaxy bias and redshiftspace distortions. I will present recent progress in modeling these three effects that pave the way to constraining cosmology and galaxy formation with increased precision. Continue reading… Recent Progress in LargeScale Structure – Roman Scoccimarro 
Atom Interferometry Fundamentals and its Applications in Space Science – Babak Saif  Tue. May 6th, 2014 11:30 am12:30 pm 

Shape of the Universe – Daniel Müller  Tue. April 29th, 2014 11:30 am12:30 pm 
The most recent observations indicate that the Universe is isotropic, with a small spatial curvature, which can be either positive, negative or zero. As is well known, Einstein’s theory of gravitation restricts the spatially isotropic sections of space time to be locally S^3, H^3 or E^3, respectively. Thus, the topology of the Universe is only partly determined. On the other hand there are a few effects which occur for non trivial topology. In this talk, we will give a brief discussion of some of these, in particular of the Casimir effect which should have been important in the primordial stages of the Universe. 
Testing Gravity via Lunar Laser Ranging – Tom Murphy  Tue. April 22nd, 2014 11:30 am12:30 pm 
Forty years ago, Apollo astronauts placed the first of several retroreflector arrays on the moon. Laser range measurements between the earth and the moon have provided some of our best tests to date of general relativity and gravitational phenomenology–including the equivalence principle, the timerateofchange of the gravitational constant, the inverse square law, and gravitomagnetism. A new effort called APOLLO (the Apache Point Observatory Lunar Laserranging Operation) is now collecting measurements at the unprecidented precision of one millimeter, which will produce orderofmagnitude improvements in a variety of gravitational tests, as well as reveal more detail about the interior structure of the moon. Continue reading… Testing Gravity via Lunar Laser Ranging – Tom Murphy 
WIMP physics with direct detection – Annika H. G. Peter  Tue. April 8th, 2014 11:30 am12:30 pm 
One of the bestmotivated classes of darkmatter candidate is the WeaklyInteracting Massive Particle (WIMP). In this talk, I will discuss WIMPs in the context of directdetection experiments. First, I will discuss a new signal for WIMP dark matter: gravitational focusing in directdetection experiments. This effect leads to an energydependent phaseshift in the peak directdetection event rate throughout the year. I will discuss this in light of current putative annualmodulation claims. Second, I will discuss what we can learn about WIMPs in the “earlydiscovery” days once WIMPs are conclusively found in directdetection experiments. I will show that what we can learn about WIMPs depends sensitively on the ensemble of experiments that are running at the time of discovery. Continue reading… WIMP physics with direct detection – Annika H. G. Peter 
Probing Dark Energy Using Growth of Structure: The Role of Simulations – HaoYi Wu  Tue. April 1st, 2014 11:30 am12:30 pm 
The growth of cosmic structure provides a unique approach for measuring the dynamic evolution of dark energy and distinguishing different models of gravity. In this talk, I will focus on two of the most important methods for measuring the growth of structure: galaxy cluster counts and the redshiftspace distortions of galaxy clustering. I will discuss the systematic uncertainties involved in both methods, and how I use numerical simulations to help reducing these systematics and improve our theoretical predictions. Continue reading… Probing Dark Energy Using Growth of Structure: The Role of Simulations – HaoYi Wu 
Science with CMB Spectral Distortions: a New Window to EarlyUniverse Physics – Jens Chluba  Tue. March 18th, 2014 11:30 am12:30 pm 
Since COBE/FIRAS we know that the CMB spectrum is extremely close to a perfect blackbody. There are, however, a number of processes in the early Universe that should create spectral distortions at a level that is within reach of present day technology. I will give an overview of recent theoretical and experimental developments, explaining why future measurements of the CMB spectrum will open up an unexplored window to earlyuniverse and particle physics, with possible nonstandard surprises but also guaranteed signals awaiting us. 
The Marvelous Success of the Standard Model of Cosmology – Lloyd Knox  Wed. February 26th, 2014 12:30 pm1:30 pm 
The standard model of cosmology has been remarkably successful in its predictions for current data given earlier data. One can react with sadness for the lack of evidence for new physics, chase marginal anomalies, or marvel at the success and soldier on toward better measurements knowing new physics may be just around the corner. In this talk I will reveal some of the inner workings of this success in order to communicate why I find it marvelous. For example, for the predictions to agree with cosmic microwave background (CMB) data we need, at very high statistical significance, a cosmic neutrino background, Continue reading… The Marvelous Success of the Standard Model of Cosmology – Lloyd Knox 
21cm Cosmology – UeLi Pen  Tue. February 18th, 2014 11:30 am12:30 pm 
I present recent developments in a new window to map the large scale structure of the universe through intensity mapping using the collective unresolved emission of cosmic hydrogen 21cm emission. Initial maps have been made with various existing telescopes, and an ambitious survey, the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is under construction. Future potential science targets include precision measurements of dark energy, neutrino masses, and possibly gravitational waves. 
Cosmology and Systematics of Multiwavelength Galaxy Cluster Observables – Tomasz Biesiadzinski  Tue. February 11th, 2014 11:30 am12:30 pm 
The current concordance lCDM cosmological model describes a universe where cold dark matter seeds structure formation and a cosmological constant drives its accelerated expansion. Precise measurements of various astronomical observables allow us to test this model and any deviations, if found, may lead to an improved cosmological theory. Ongoing and planned large scale surveys of the skies have the power to study the lCDM model. However the data sets they generate will be dominated by complex systematic uncertainties. One probe of cosmological parameters, the evolution of clusters of galaxies, has the power to differentiate simple models of dark energy, like the cosmological constant, 
QuantumLimited Superconducting Detectors and Amplifiers for Cosmology – Philip Mauskopf  Fri. February 7th, 2014 12:30 pm1:30 pm 

21cm Intensity Mapping – Jeffrey Peterson  Tue. January 28th, 2014 11:30 am12:30 pm 
Continue reading… 21cm Intensity Mapping – Jeffrey Peterson 
Supersymmetry, Nonthermal Dark Matter and Precision Cosmology  Tue. December 3rd, 2013 11:30 am12:30 pm 
Within the Minimal Supersymmetric Standard Model (MSSM), LHC bounds suggest that scalar superpartner masses are far above the electroweak scale. Given a high superpartner mass, nonthermal dark matter is a viable alternative to WIMP dark matter generated via freezeout. In the presence of moduli fields nonthermal dark matter production is associated with a long matter dominated phase, modifying the spectral index and primordial tensor amplitude relative to those in a thermalized primordial universe. Nonthermal dark matter can have a higher selfinteraction crosssection than its thermal counterpart, enhancing astrophysical bounds on its annihilation signals. I will review recent progress in this program, Continue reading… Supersymmetry, Nonthermal Dark Matter and Precision Cosmology 
Cosmic Bandits: Exploration vs. Exploitation in Cosmological Surveys – Ely Kovetz  Tue. November 26th, 2013 11:30 am12:30 pm 
Various cosmological observations consist of prolonged integrations over small patches of sky. These include searches for Bmodes in the CMB, the power spectrum of 21cm fluctuations during the epoch of reionization and deepfield imaging by telescopes such as HST/JWST, among others. However, since these measurements are hindered by spatiallyvarying foreground noise, the observational sensitivity can be improved considerably by finding the region of sky cleanest of foregrounds. The best strategy thus involves a tradeoff between exploration (to find lowerforeground patches) and exploitation (through prolonged integration). But how to balance this tradeoff efficiently? This problem is akin to the multiarmed bandit (MAB) problem in probability theory, Continue reading… Cosmic Bandits: Exploration vs. Exploitation in Cosmological Surveys – Ely Kovetz 
Turning trajectories in multifield inflation – Krzysztof Turzyński  Tue. November 19th, 2013 11:30 am12:30 pm 
The latest results from the PLANCK collaboration, consistent with the simplest singlefield models of slowroll inflation and with no trace of nonGaussianity, have extinguished many hopes of seeing specific aspects of New Physics directly in the sky. One may then wonder whether the landscape of allowed inflationary models has been practically reduced to singlefield effective theories. I shall argue that the answer is negative and present several inflationary models in which the turninduced interactions between two scalar fields affect the normalization/running of the power spectrum of curvature perturbations, or smooth out its features (e.g. via particle production), actually driving the power spectrum towards phenomenologically acceptable characteristics. Continue reading… Turning trajectories in multifield inflation – Krzysztof Turzyński 
Lorentz violation in gravity: why, how and where – Diego Blas  Mon. November 18th, 2013 3:00 pm4:00 pm 
Recent approaches to quantum gravity question the role of Lorentz invariance as a fundamental symmetry of Nature. This has implications for most of the observables in gravitational physics, also at lowenergies. In this talk I will describe recent bounds on deviations from Lorentz invariance in gravity coming from binary pulsar observations and cosmological data. Continue reading… Lorentz violation in gravity: why, how and where – Diego Blas 
Nonlocal quantum effects in cosmology – John Donoghue  Tue. November 12th, 2013 11:30 am12:30 pm 
In general relativity, there are nonlocal quantum effects that come from the propagation of light particles including gravitons. I will review the effective field theory treatment which allows one to identify the reliable parts of the quantum loops. In cosmology, there are then nonlocal corrections to the FLRW equations. I will present some of the formalism for this and give some exploration of results. Continue reading… Nonlocal quantum effects in cosmology – John Donoghue 
Cosmology from conformal symmetry – Austin Joyce  Tue. October 29th, 2013 11:30 am12:30 pm 
We will explore the role that conformal symmetries may play in cosmology. First, we will discuss the symmetries underlying the statistics of the primordial perturbations which seeded the temperature anisotropies of the Cosmic Microwave Background. I will show how symmetry considerations lead us to three broad classes of theories to explain these perturbations: singlefield inflation, multifield inflation, and the conformal mechanism. We will discuss the symmetries in each case and derive their modelindependent consequences. Finally, we will examine the possibility of violating the null energy condition with a wellbehaved quantum field theory. Continue reading… Cosmology from conformal symmetry – Austin Joyce 
Goldstone bosons with spontaneously broken Lorentz symmetry – Riccardo Penco  Tue. October 15th, 2013 11:30 am12:30 pm 
In this talk, I will discuss some general properties of effective theories of Goldstone bosons in which Lorentz symmetry is spontaneously broken. I will first introduce an extension of Goldstone theorem to systems with a finite density of charge. This very general setting is potentially applicable to contexts as diverse as early universe cosmology and QCD at finite density. Additionally, I will show how certain effective theories of Goldstones with broken Lorentz symmetry admit UV completions that do not restore any broken symmetry. Continue reading… Goldstone bosons with spontaneously broken Lorentz symmetry – Riccardo Penco 
SlavnovTaylor Identities for Primordial Perturbations – Lasha Berezhiani  Tue. October 8th, 2013 11:30 am12:30 pm 
I will show that all consistency relations for the primordial perturbations derive from a single, master identity, which follows from the SlavnovTaylor identity for spatial diffeomorphisms. This master identity is valid at any value of momenta and therefore goes beyond the soft limit. This approach underscores the role of spatial diffeomorphism invariance at the root of cosmological consistency relations. It also offers new insights on the necessary conditions for their validity: a physical contribution to the vertex functional must satisfy certain analyticity properties in the soft limit in order for the consistency relations to hold. For standard inflationary models, this is equivalent to requiring that mode functions have constant growingmode solutions. Continue reading… SlavnovTaylor Identities for Primordial Perturbations – Lasha Berezhiani 
Symmetry Breaking and Galileons – Garrett Goon  Wed. October 2nd, 2013 11:30 am12:30 pm 
Galileons, and related theories, have deep connections to spontaneous symmetry breaking. After reviewing the origins of Galileon theories, I motivate their interpretation as Goldstone Bosons and illustrate some of their special technical properties before proceeding to discuss applications and future directions. Continue reading… Symmetry Breaking and Galileons – Garrett Goon 
CMB Lensing: reconstruction from polarisation & implications for cosmology from cross correlation with galaxies – Ruth Pearson  Tue. September 24th, 2013 11:30 am12:30 pm 
CMB Lensing is a probe of the matter distribution between the surface of last scattering and today, which has been measured using CMB temperature data. Signal to noise for lensing reconstruction from CMB polarisation data is expected to be much better, since B modes on small scales should vanish in the absence of lensing. An effect of having data from an incomplete sky is leakage of E mode power in to B mode power. Upcoming data analysis from ground based CMB polarisation instruments must account for this effect. In the first part of my talk I will show results for CMB polarisation lensing reconstruction from small patches of sky, 
Making the connection between galaxy voids, dark matter underdensities and theory – Paul Sutter  Tue. September 10th, 2013 11:30 am12:30 pm 
TBA 
The Universe in a New Light: the First Cosmological Results from the Planck Mission – Bill Jones  Tue. April 30th, 2013 2:30 pm3:30 pm 
The precision and accuracy of the recently released Planck data are without precedent; the data from a single experiment provide allsky images at wavelengths never before explored, covering more than three decades in angular scale with a signal dynamic range exceeding a factor of a million. These data open new avenues of research in fields ranging from Galactic astrophysics to cosmology. Our present Universe has shown herself to be both simple and elegant, and although her origins remain enshrouded in mystery, it appears that her past may have been more complex. While the Planck data have begun to inform us about the nature of cosmogenesis, 
Detecting Modified Gravity in the Stars – Jeremy Sakstein  Mon. April 29th, 2013 10:30 am11:30 am 
Screened scalartensor gravity such as chameleon and symmetron theories allow order one deviations from General Relativity on large scales whilst satisfying all local solarsystem constraints. A lot of recent work has therefore focused on searching for observational signatures of these models and constraining them. If these models are to be viable then our own solar system is necessarily screened, however, this may not be the case for stars in dwarf galaxies, which can exhibit novel and unique phenomena. These new effects can be exploited to produce constraints that are far more competitive than laboratory and cosmological tests and in this talk, Continue reading… Detecting Modified Gravity in the Stars – Jeremy Sakstein 
Senior Project Symposium  Sat. April 20th, 2013 11:30 am12:30 pm 

In search for hints of resonance in the CMB power spectrum – Daan Meerburg  Tue. April 16th, 2013 11:30 am12:30 pm 
We investigate possible resonance effects in the primordial power spectrum using the latest CMB data. These effects are predicted by a wide variety of models and come in two flavors, one where the oscillations are log spaced and one where the oscillations are linearly spaced. We treat the oscillations as perturbations on top of the scale invariant power spectrum. This allows us to significantly improve the search for resonance because it allows us to precompute the transfer functions. We show that the largest error from this simplification comes from the variance in the measurement to the distance of last scattering. Continue reading… In search for hints of resonance in the CMB power spectrum – Daan Meerburg 
Black Hole SpaceTimes from S Matrices – Ira Rothstein  Tue. April 9th, 2013 11:30 am12:30 pm 
In this talk I will show how to generate classical spacetimes directly from S matrices. The method makes no use of Einsteins’ equations nor, for that matter, any spacetime action at all. This approach also allows us to make direct contact between the classical solutions of YangMills theory and those of gravity through the squaring relation between the YangMills and gravitational tree level scattering amplitudes. In this way one may construct classical spacetimes directly from YangMills theory. – Continue reading… Black Hole SpaceTimes from S Matrices – Ira Rothstein 
Testing gravity with pulsars, black holes and the microwave background – Lam Hui  Tue. April 2nd, 2013 11:30 am12:30 pm 
We will discuss 3 topics: 1. a way to detect gravitational waves using binaries; 2. a way to test general relativity using black holes; 3. a way to connect superhorizon fluctuations with the observed statistical asymmetry of the universe. Continue reading… Testing gravity with pulsars, black holes and the microwave background – Lam Hui 
Neutrinoless double beta decay results from EXO200 – Carter Hall  Tue. March 26th, 2013 11:30 am12:30 pm 
Neutrinoless double beta decay has never been definitively observed, although for the last ten years one group has claimed to see a 6sigma positive effect in 76Ge. Recently the EXO200 experiment produced the first independent check on this claim using 136Xe. This talk will report on the double beta decay results from EXO200 and other experiments, along with prospects for future progress in this field. Continue reading… Neutrinoless double beta decay results from EXO200 – Carter Hall 
CMB NonGaussianity from Recombination and Fingerprints of Dark Matter – Cora Dvorkin  Tue. February 26th, 2013 11:30 am12:30 pm 
In this talk, I show that dark matter annihilation around the time of recombination can lead to growing ionization perturbations, that track the linear collapse of matter overdensities. This amplifies small scale cosmological perturbations to the free electron density by a significant amount compared to the usual acoustic oscillations. Electron density perturbations distort the CMB, inducing secondary nongaussianity, offering a means of detection by Planck and other experiments. I will present a novel analytic calculation of CMB nongaussianity from recombination, providing a clear identification of the relevant physical processes. I will show that, even though electron perturbations can be markedly boosted compared with the standard model prediction, 
Odd tensor modes from particle production during inflation – Lorenzo Sorbo  Tue. December 4th, 2012 11:30 am12:30 pm 
Several mechanisms can lead to production of particles during primordial inflation. I will review how such a phenomenon occurs and I will discuss how it can lead to the generation of tensor modes with unusual properties that might be detected in the notsofar future. The gravitational waves produced this way can have a larger amplitude than in the standard scenarios, can violate parity, and their spectrum can display a feature that can be directly detected within the decade by secondgeneration gravitational interferometers such as advanced LIGO. Continue reading… Odd tensor modes from particle production during inflation – Lorenzo Sorbo 
Advances in Solving the TwoBody Problem in General Relativity: Implications for the Search of Gravitational Waves – Alessandra Buonanno  Tue. November 20th, 2012 11:30 am12:30 pm 
Compact binary systems composed of black holes and neutron stars are among the most promising sources for groundbased gravitationalwave detectors, such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and its international partners. A detailed and accurate understanding of the shape of the gravitational waves is crucial not only for the initial detection of such sources, but also for maximizing the information that can be obtained from the gravitationalwave signals once they are observed. In this talk I will review progresses at the interface between analytical and numerical relativity. These advances have deepened our understanding of the twobody problem in general relativity, 
Effective Field Theory for Fluids – Rachel Rosen  Tue. November 13th, 2012 11:30 am12:30 pm 
In this talk I will present the lowenergy effective field theory that describes the infrared dynamics of nondissipative fluids. In particular, I will use the techniques of nonlinear realizations developed by Callan, Coleman, Wess and Zumino, and Volkov to construct the effective theory based on the symmetrybreaking pattern of the fluid. I will discuss how this formalism can be used to incorporate quantum anomalies into the effective field theory. Continue reading… Effective Field Theory for Fluids – Rachel Rosen 
Recent Results from CDMS II and The SuperCDMS Darkmatter Program – Raymond Bunker  Tue. November 6th, 2012 11:30 am12:30 pm 
The Cryogenic Dark Matter Search experiment (CDMS II) was designed to directly detect dark matter by simultaneously measuring phonon and ionization signals caused by particle interactions in semiconductor targets, allowing eventbyevent discrimination of signal from background via the relative sizes of the two signals. I’ll briefly review the CDMS II experiment and then focus on recent results related to the current lowmass WIMP controversy, including data from the CoGeNT, CRESST II, and DAMA/LIBRA experiments that hint at a lowmass WIMP signal and the (similarly sensitive) lowthreshold and annualmodulation analyses performed by the CDMS II collaboration. I’ll also comment on the Collar and Fields likelihood analysis of the CDMS II lowenergy data. Continue reading… Recent Results from CDMS II and The SuperCDMS Darkmatter Program – Raymond Bunker 
Kicking Chameleons: Early Universe Challenges for Chameleon Gravity – Adrienne Erickcek  Tue. October 9th, 2012 11:30 am12:30 pm 
Chameleon gravity is a scalartensor theory that mimics general relativity in the Solar System. The scalar degree of freedom is hidden in highdensity environments because the effective mass of the chameleon scalar depends on the trace of the stressenergy tensor. In the early Universe, when the trace of the stressenergy tensor is nearly zero, the chameleon is very light and Hubble friction prevents it from reaching its potential minimum. Whenever a particle species becomes nonrelativistic, however, the trace of the stress energy tensor is temporarily nonzero, and the chameleon begins to roll. I will show that these “kicks” to the chameleon field have catastrophic consequences for chameleon gravity. 
A new window on primordial nonGaussianity – Enrico Pajer  Tue. October 2nd, 2012 11:30 am12:30 pm 
We know very little about primordial curvature perturbations on scales smaller than about a Mpc. I review how mutype distortion of the Cosmic Microwave Background spectrum provides the unique opportunity to probe these scales over the unexplored range from 50 to $104 Mpc1$. This is a very clean probe, in that it relies only on wellunderstood linear evolution. While mudistortion by itself can constrain the amount of power on small scales, correlations between mudistortion and temperature anisotropies can be used to test Gaussianity. In particular the muT cross correlation is proportional to the very squeezed limit of the primordial bispectrum and hence measures $f_NL$ local, Continue reading… A new window on primordial nonGaussianity – Enrico Pajer 
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) – a new tool to probe the dark energy driven expansion history of the universe from z=13 – Matt Dobbs  Tue. September 25th, 2012 11:30 am12:30 pm 
The most surprising discovery in cosmology since Edwin Hubble observed the expansion of the Universe isthat the rate of this expansion is accelerating. This either signals that a mysterious Dark Energy dominatesthe energy density of the Universe, or that our understanding of gravity on large scales is incorrect. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will produce the largest volume astronomical survey to date, potentially unlocking the mysteries the darkenergy driven expansion history of the Universe. The CHIME telescope forms an image of the entire overhead sky each night by digitally processing the information received on a compact array of 2500 radio receivers. 
NonGaussianity from general inflationary states – Nishant Agarwal  Tue. September 18th, 2012 11:30 am12:30 pm 
I will describe the effects of nontrivial initial quantum states for inflationary fluctuations within the context of the effective field theory for inflation. We find that besides giving rise to large nonGaussianities from inflation, general initial states can also have interesting implications for the consistency relation of the bispectrum. In addition, they leave a distinct observable signature on the scaledependence of the bias of dark matter halos. I will also discuss constraints on the initial state from current large scale structure data, including luminous red galaxies and quasars in the Sloan Digital Sky Survey sample. Continue reading… NonGaussianity from general inflationary states – Nishant Agarwal 
Boosting the Universe: Observational consequences of our motion – Amanda Yoho  Tue. September 11th, 2012 11:30 am12:30 pm 
The Cosmic Microwave Background (CMB), photons from the earliest epoch that are able to free stream towards us, provides a unique opportunity to learn about many properties of the universe we live in. Already, the temperature fluctuations of the CMB have been studied by the Wilkinson Anisotropy Probe (WMAP) and have allowed many cosmological parameters to be pinned down to within a percent error. However, there are many more mysteries to be uncovered by precise measurements of the CMB polarization of these photons and weak lensing fields. Only with a robust understanding of the possible contaminants and astrophysical effects that can deform the measured fields will we be able to accurately characterize which models are favored over others. Continue reading… Boosting the Universe: Observational consequences of our motion – Amanda Yoho 
The interplay between high and low redshift universe – Azadeh Moradinezhad Dizgah  Tue. September 4th, 2012 11:30 am12:30 pm 
Continue reading… The interplay between high and low redshift universe – Azadeh Moradinezhad Dizgah 
Supersymmetry, Naturalness, and the LHC: Where Do We Stand? – Matthew Reece  Tue. May 1st, 2012 11:30 am12:30 pm 
The LHC has accumulated a large luminosity and has already begun ruling out a wide range of theoretical scenarios. I will discuss the theoretical implications of current LHC searches for supersymmetry and the first tentative Higgs measurements. In particular, I will assess the current status of SUSY naturalness, and explain some ways in which searches for the scalar top quark might help to further constrain the parameter space. Continue reading… Supersymmetry, Naturalness, and the LHC: Where Do We Stand? – Matthew Reece 
Gravitational Wave Detection with Pulsars: the NANOGrav collaboration – Dan Stinebring  Tue. April 24th, 2012 11:30 am12:30 pm 
The effort to detect longwavelength gravitational waves with a pulsar timing array (PTA) is progressing well, with three major international groups intensifying their efforts and increasingly sharing data and techniques. *Your* PTA, the North American Nanohertz Observatory for Gravitational waves (NANOGrav) is making excellent progress. I will report on our recent results and also comment on my group’s specialty, the effort to remove time variable propagation delays through the ionized interstellar medium. 
Hunting for de Sitter vacua in the String Landscape – Gary Shiu  Tue. April 17th, 2012 11:30 am12:30 pm 
Results from observational cosmology suggest that our universe is currently accelerating. The simplest explanation is that we are living in a universe with a positive cosmological constant. In this talk, I will describe some recent attempts in constructing such solutions in string theory and discuss the difficulties one encounters in finding metastable de Sitter vacua. Thus, the requirement of positive cosmological constant and stability imposes strong constraints on the string theory landscape. Continue reading… Hunting for de Sitter vacua in the String Landscape – Gary Shiu 
Bosonic and Fermionic Nonthermal Dark Matter Isocurvature Perturbations and NonGaussianities – Daniel Chung  Tue. April 10th, 2012 11:30 am12:30 pm 
Dark matter candidates in a broad class of nonthermal models produce primordial isocurvature perturbations and nonGaussianities. We discuss the model dependence of such scenarios. In particular, fermionic superheavy dark matter requires nongravitational interactions to be observationally interesting. We also present a general mathematical result regarding the cross correlation between the primordial isocurvature perturbations and curvature perturbations. This last result is of general interest for isocurvature phenomenology. Download the slides 
Ghostfree multimetric interactions  Tue. April 3rd, 2012 11:30 am12:30 pm 
The idea that the graviton may be massive has seen a resurgence of interest due to recent progress which has overcome its traditional problems. I will review this recent progress, and show how the theory can be extended to write consistent interactions coupling together multiple massive spin2 fields. Download the slides 
ChromoNatural Inflation – Peter Adshead  Tue. March 27th, 2012 11:30 am12:30 pm 
I will describe a new model for inflation – ChromoNatural Inflation – consisting of an axionic scalar field coupled to a set of three nonAbelian gauge fields. The model’s novel requirement is that the gauge fields begin inflation with a rotationally invariant vacuum expectation value (VEV) that is preserved through identification of SU(2) gauge invariance with rotations in three dimensions. The gauge VEV interacts with the background value of the axion, leading to an attractor solution that exhibits slow roll inflation even when the axion decay constant has a natural value (\less M_{\rm Pl}). Assuming a sinusoidal potential for the axion, 
Testing the concordance cosmology with weak gravitational lensing – Ali Vanderveld  Tue. March 20th, 2012 11:30 am12:30 pm 
Weak gravitational lensing, whereby the images of background galaxies are distorted by foreground matter, can be a powerful cosmological probe if systematics are sufficiently controlled. In particular, I will show how we may use weak lensing to robustly test the standard cosmological constantdominated “concordance model” of cosmology by using inhand expansion history data to make predictions for future observations. I will then discuss one recent proposal for economically gathering the necessary data while minimizing systematics — the balloonborne High Altitude Lensing Observatory (HALO). Download the slides Continue reading… Testing the concordance cosmology with weak gravitational lensing – Ali Vanderveld 
An estimator for statistical anisotropy from the CMB bispectrum – Ema Dimstrogiovanni  Tue. February 28th, 2012 11:30 am12:30 pm 
Various data analysis of the Cosmic Microwave Background (CMB) radiation present anomalous features that can be interpreted as indications of statistical isotropy breaking. Some models of inflation involving vector fields predict statistical anisotropy in the correlation functions of primordial curvature perturbations. We employ a simplified vector field model and parametrize the bispectrum of curvature fluctuations in such a way that all the information about statistical anisotropy is encoded in some coefficients lambda_{LM} (representing the ratio of the anisotropic to the isotropic bispectrum amplitudes). We compute an optimal estimator for these coefficients and their Fisher error. We predict a sensitivity for an experiment like Planck to the anisotropic to isotropic amplitudes of about 10% if fNL is around 30. 
Local Primordial nonGaussianity in Largescale Structure – Marilena LoVerde  Tue. February 21st, 2012 11:30 am12:30 pm 
Primordial nonGaussianity is among the most promising of few observational tests of physics at the inflationary epoch. At present nonGaussianity is best constrained by the cosmic microwave background, but in the near term largescale structure data may be competitive so long as the effects of primordial nonGaussianity can be modeled through the nonlinear process of structure formation. I will discuss recent work modeling effects of a few types of primordial nonGaussianity on the largescale halo clustering and the halo mass function. More specifically, I will compare analytic and Nbody results for two variants of the curvaton model of inflation: (i) a “tau_NL” Continue reading… Local Primordial nonGaussianity in Largescale Structure – Marilena LoVerde 
Inflation, or What? – William Kinney  Tue. February 14th, 2012 11:30 am12:30 pm 
Cosmological inflation is the leading candidate theory for the physics of the early universe, and is in beautiful agreement with current cosmological data such as the WMAP Cosmic Microwave Background measurement. I consider alternatives to inflation with a critical eye, and present a simple argument showing that any model which matches the observed universe must have one of three properties: (1) accelerated expansion, (2) speed of sound faster than the speed of light, or (3) superPlanckian energy density. Download the slides 
Quantum Kinetics and Thermalization of Hawking Radiation – Dmitry Podolsky  Tue. February 7th, 2012 11:30 am12:30 pm 
Hawking’s discovery of black holes radiance along with Bekenstein’s conjecture of the generalized second law of thermodynamics inspired a conceptually pleasing connection between gravity, thermodynamics and quantum theory. However, the discovery that the spectrum of the radiation is in fact thermal, together with the nohair theorem, has brought along with it some undesirable consequences, most notably the information loss paradox. There have been many proposals to the resolution of this paradox, with the most natural resolution being that during the time of collapse the radiation given off is not completely thermal and can carry small amounts of information with it. Continue reading… Quantum Kinetics and Thermalization of Hawking Radiation – Dmitry Podolsky 
Condensates and quasiparticles in inflationary cosmology – Daniel Boyanovsky  Mon. February 6th, 2012 11:30 am12:30 pm 
Correlation functions during inflation feature infrared effects that could undermine a perturbative study. I will discuss selfconsistent mechanisms of mass generation that regulates infrared physics, and introduce a method based on quantum optics to obtain the decay width of quantum states. Lack of energy conservation entails that EVERY particle acquires a width as a result of emission and absorption of superhorizon quanta thus becoming “quasiparticles”. BLACKBOARD TALK Continue reading… Condensates and quasiparticles in inflationary cosmology – Daniel Boyanovsky 
Gravitational Waves from Cosmological Phase Transitions – Tom Giblin  Tue. January 31st, 2012 11:30 am12:30 pm 
Cosmological phase transitions occurred. I will talk about recent advances in modeling possible phase transitions when these transitions are mediated by scalar fields. I will discuss first and secondorder transitions, at various scales, and show how we can compute the background of stochastic gravitational waves produced during (and after) these transitions. Continue reading… Gravitational Waves from Cosmological Phase Transitions – Tom Giblin 
Spatially Covariant Theories of a Transverse, Traceless Graviton – Godfrey Miller  Tue. January 24th, 2012 11:30 am12:30 pm 
General relativity is a generally covariant, locally Lorentz covariant theory of two transverse, traceless graviton degrees of freedom. According to a theorem of Hojman, Kuchar, and Teitelboim, modifications of general relativity must either introduce new degrees of freedom or violate the principle of local Lorentz covariance. In this paper, we explore modifications of general relativity that retain the same graviton degrees of freedom, and therefore explicitly break Lorentz covariance. Motivated by cosmology, the modifications of interest maintain explicit spatial covariance. In spatially covariant theories of the graviton, the physical Hamiltonian density obeys an analogue of the renormalization group equation which encodes invariance under flow through the space of conformally equivalent spatial metrics. Continue reading… Spatially Covariant Theories of a Transverse, Traceless Graviton – Godfrey Miller 
Dark matter bounds from direct and indirect searches – Aravind Natarajan  Tue. November 22nd, 2011 11:30 am12:30 pm 
I discuss ways of constraining dark matter properties using a combination of direct and indirect dark matter measurements. The DAMA, CoGeNT, and CRESST experiments have obtained tentative evidence for low mass WIMPs. I show that the CMB is a clean probe of low mass WIMPs, and the WMAP+SPT measurements place competitive bounds on light WIMPs. I discuss how these dark matter bounds may be further improved by including other data sets, such as counts of galaxy clusters. Continue reading… Dark matter bounds from direct and indirect searches – Aravind Natarajan 
Light does not always travel on the light cone – YiZen Chu  Tue. November 15th, 2011 11:30 am12:30 pm 
Massless particles such as photons and gravitons do not travel solely on the null cone in a generic curved spacetime. They propagate at all speeds equal to and less than c. This fact does not appear to be well appreciated in cosmology, and its consequences deserve to be worked out to ensure we are interpreting observations correctly. A rather dramatic (and hypothetical) example would be the following: suppose a significant fraction of photons from a distant supernova travels slower than c, then we may be mislead into thinking the SN is dimmer than it actually is, because some of the light has not arrived yet. Continue reading… Light does not always travel on the light cone – YiZen Chu 
Holographic Quantum Quench – Sumit Das  Fri. November 11th, 2011 11:30 am12:30 pm 
The holographic correspondence between nongravitational field theories and gravitational theories in one higher dimension can be used to study nonequilibrium behavior of strongly coupled quantum field theories. One such phenomenon is that of quantum quench, where a coupling of the field theory is time dependent and typically asymptotes to constants at early and late times. In the gravity dual this can describe, under suitable circumstances, either black hole formation, or passage through a spacelilke region of high curvature similar to a cosmological singularity. On one hand this has taught us about the meaning of cosmological singularities, while on the other hand this has thrown light on the process of thermalization in strongly coupled field theories. 
A Paradise Island for Deformed Gravity – Florian Kuehnel  Tue. November 8th, 2011 11:30 am12:30 pm 
I will discuss our recentlyproposed model (hepth/1106.3566) of deformations of general relativity that are consistent and potentially phenomenologically viable, since they respect cosmological backgrounds. These deformations have unique symmetries in accordance with unitarity requirements, and give rise to a curvature induced selfstabilizing mechanism. Furthermore, our findings include the possibility of consistent and potentially phenomenologically viable deformations of general relativity that are solely operative on curved spacetime geometries, reducing to Einstein’s theory on the Minkowski background. I will also comment on possible phenomenological implications. Continue reading… A Paradise Island for Deformed Gravity – Florian Kuehnel 
Measuring the dark sector with clusters of galaxies – Douglas Clowe  Tue. November 1st, 2011 11:30 am12:30 pm 
Since Zwicky (1933), we have known that clusters of galaxies have gravitational potentials which are too large to be explained by the amount of visible baryons under the assumption of a Newtonian gravitational force law. This has led to competing hypotheses that either the masses of clusters are dominated by a nonbaryonic form of matter or that gravity departs from a 1/r^2 force law on cluster scales. By using merging clusters of galaxies, I will show that the different types of matter in the clusters can be spatially seperated and, by using gravitational lensing, I will prove, independent of any assumptions about the nature of the law of gravity, Continue reading… Measuring the dark sector with clusters of galaxies – Douglas Clowe 
Carving Out the Space of Conformal Field Theories – David SimmonsDuffin  Fri. October 28th, 2011 11:30 am12:30 pm 
Conformal Field Theories (CFTs) are theories that are symmetric under changes of distance scale, like a fractal or a Russian doll. They are basic building blocks of more general Quantum Field Theories, which can describe how nature works at its most fundamental level. Despite their importance, the range of possible behavior in CFTs is poorly understood, and often the most interesting theories resist calculation with conventional perturbative methods. However, over the last few years, new techniques have emerged for mapping out the space of these important theories. I’ll explain how to use basic mathematical consistency conditions, techniques from optimization theory (a subfield of computer science), Continue reading… Carving Out the Space of Conformal Field Theories – David SimmonsDuffin 
Understanding Chameleon Scalar Fields via Electrostatic Analogy – Kate JonesSmith  Tue. October 18th, 2011 11:30 am12:30 pm 
The latetime accelerated expansion of the universe could be caused by a scalar field that is screened on small scales, as in chameleon or symmetron scenarios. We present an analogy between such scalar fields and electrostatics, which allows calculation of the chameleon field profile for general extended bodies. Interestingly, the field demonstrates a `lightning rod’ effect, where it becomes enhanced near the ends of a pointed or elongated object. Drawing from this correspondence, we show that nonspherical test bodies immersed in a background field will experience a net torque caused by the scalar field. This effect, with no counterpart in the gravitational case, Continue reading… Understanding Chameleon Scalar Fields via Electrostatic Analogy – Kate JonesSmith 
How Asymmetric Dark Matter May Alter the Conditions of Stardom – Andrew Zentner  Tue. September 27th, 2011 11:30 am12:30 pm 
Numerous recent experimental results have reinforced interest in a class of models dubbed “Asymmetric Dark Matter” (ADM), in which the relic dark matter density results from a particleantiparticle asymmetry. Early models of this sort were invoked to explain the fact that the cosmic baryon and dark matter densities are of the same order, yet in the standard cosmology, they are produced by distinct physical processes. In such models, the relic dark matter density results from an asymmetry (perhaps dark matter carries BL charge), so there are no contemporary cosmic dark matter annihilations and no opportunity for indirect detection. Otherwise, these scenarios give essentially the same cosmological predictions as the standard weaklyinteracting massive particle/cold dark matter paradigm, Continue reading… How Asymmetric Dark Matter May Alter the Conditions of Stardom – Andrew Zentner 
How the genome folds – Erez Lieberman Aiden  Fri. September 23rd, 2011 11:30 am12:30 pm 
I describe HiC, a novel technology for probing the threedimensional architecture of whole genomes by coupling proximitybased ligation with massively parallel sequencing. Working with collaborators at the Broad Institute and UMass Medical School, we used HiC to construct spatial proximity maps of the human genome at a resolution of 1Mb. These maps confirm the presence of chromosome territories and the spatial proximity of small, generich chromosomes. We identified an additional level of genome organization that is characterized by the spatial segregation of open and closed chromatin to form two genomewide compartments. At the megabase scale, the chromatin conformation is consistent with a fractal globule, Continue reading… How the genome folds – Erez Lieberman Aiden 
Lumps and bumps in the early universe: (p)reheating and oscillons after inflation – Mustafa Amin  Tue. September 20th, 2011 11:30 am12:30 pm 
Our understanding of the universe between the end of inflation and production of light elements is incomplete. How did inflation end? What did the universe look like at the end of inflation? In this talk, I will discuss the different scenarios of (p)reheating: particle production at the end of inflation. I will then concentrate on a particular scenario: the fragmentation of the inflaton into localized, longlived excitations of the inflaton field (oscillons), which end up dominating the energy density of the universe if couplings to other fields are weak. Oscillons are produced in a large class of inflationary models which are theoretically well motivated and observationally consistent with the cosmic microwave background anisotropies. 
Massive gravitons and enhanced gravitational lensing – Mark Wyman  Tue. April 26th, 2011 11:30 am12:30 pm 
The mystery of dark energy suggests that there is new gravitational physics at low energies and on long length scales. On the other hand, low mass degrees of freedom in gravity are strictly limited by observations within the solar system. A compelling way to resolve this apparent contradiction is to add a galileaninvariant scalar field to gravity. Called galileons, these scalars have strong self interactions near overdensities, like the solar system, that suppress their effects on the motion of massive particles. These nonlinearities are weak on cosmological scales, permitting new physics to operate. Extending galilean invariance to the coupling of galileons to stressenergy — Continue reading… Massive gravitons and enhanced gravitational lensing – Mark Wyman 
Learning about Aspects of Clusters and Cosmology from Weak and Strong Gravitational Lensing Approaches – Mandeep Gill  Tue. April 12th, 2011 11:30 am12:30 pm 
I will cover several aspects of current astrophysics that can be probed by various regimes of lensing in simulations and data –from galaxy cluster substructure to what we can learn about cosmology from cluster weak lensing ensembles. Further, a new approach to extracting information from strongly lensed arc images that I have been involved with in recent times, and which is modelindependent and has the potential to revolutionize approaches to strong lensing analyses and is very complementary to weak lensing analyses will be introduced. I will further briefly discuss initial lensing results from alreadytaken data of 6 clusters from the Large Binocular Telescope in Arizona, 
Thickwall tunneling in a piecewise linear and quadratic potential – Pascal Vaudrevange  Tue. April 12th, 2011 11:30 am12:30 pm 
After reviewing the basics of Coleman deLuccia tunneling, especially in the thinwall limit, I discuss an (almost) exact tunneling solution in a piecewise linear and quadratic potential. A comparison with the exact solution for a piecewise linear potential demonstrates the dependence of the tunneling rate on the exact shape of the potential. Finally, I will mention applications when determining initial conditions for inflation in the landscape. Based on arXiv:1102.4742 [hepth]. 
Gravitational wave astronomy in the next decade – Xavier Siemens  Tue. April 5th, 2011 11:30 am12:30 pm 
In the next decade two types of gravitational wave experiments are expected to result in the direct detection of gravitational waves: Advanced groundbased interferometric detectors and pulsar timing experiments. In my talk I will describe both types of experiments and their sensitivities to various types of gravitational wave sources. I will also discuss some of the impacts of these experiments on astronomy and cosmology. Continue reading… Gravitational wave astronomy in the next decade – Xavier Siemens 
Testing Dark Energy with Massive Galaxy Clusters – Michael Mortonson  Tue. March 29th, 2011 11:30 am12:30 pm 
Existing observations of the cosmic expansion history place strong restrictions on the rate of large scale structure growth predicted by various dark energy models. In the simplest Lambda CDM scenario, current observations enable percentlevel predictions of growth, which can be interpreted in terms of the expected abundance of massive galaxy clusters at high redshift. I will show that these predictions from current data set a firm upper limit on the cluster abundance in the more general class of quintessence models where dark energy is a canonical, minimallycoupled scalar field. While the most massive clusters known today appear to lie just below this limit, Continue reading… Testing Dark Energy with Massive Galaxy Clusters – Michael Mortonson 
New observational power from halo bias – Sarah Shandera  Tue. March 22nd, 2011 11:30 am12:30 pm 
NonGaussianity of the local type will be particularly well constrained by large scale structure through measurements of the power spectra of collapsed objects. Motivated by properties of early universe scenarios that produce observationally large local nonGaussianity, we suggest a generalized local ansatz and perform Nbody simulations to determine the signatures in the bias of dark matter halos. The ansatz introduces two bispectral indices that characterize how the local nonGaussianity changes with scale and these generate two new signals in the bias. While analytic predictions agree qualitatively with the simulations, we find numerically a stronger observational signal than expected, which suggests that a better analytic understanding is needed to fully explain the consequences of primordial nonGaussianity. Continue reading… New observational power from halo bias – Sarah Shandera 
Constraining the cosmic growth history with large scale structure – Rachel Bean  Tue. March 15th, 2011 11:30 am12:30 pm 
We consider how upcoming, prospective large scale structure surveys, measuring galaxy weak lensing, position and peculiar velocity correlations, in tandem with the CMB temperature anisotropies, will constrain dark energy when both the expansion history and growth of structure can be modified, as might arise if cosmic acceleration is due to modifications to GR. We consider an equation of state figure of merit parameter, and analogous figure of merit parameters for modified gravity, to quantify the relative constraints from CMB, galaxy position, lensing, and peculiar velocity observations and their cross correlations, independently and in tandem. Continue reading… Constraining the cosmic growth history with large scale structure – Rachel Bean 
What to do with 350,000 astronomers – Chris Lintott  Fri. February 18th, 2011 11:30 am12:30 pm 
Since its launch in 2007, the Galaxy Zoo project has involved hundreds of thousands of volunteers in the morphological classification of galaxies. Project PI Chris Lintott will review the results – which include a new understanding of the importance of red spirals – and their implications for our understanding of galaxy formation. The project has now expanded to include tasks ranging from discovering planets through to lunar classification, and the talk will also discuss the potential of this ‘citizen science’ method to help scientists cope with massive modern data sets. Continue reading… What to do with 350,000 astronomers – Chris Lintott 
Astrophysics with GravitationalWave Detectors – Vuk Mandic  Tue. February 8th, 2011 11:30 am12:30 pm 
Gravitational waves are predicted by the general theory of relativity to be produced by accelerating mass systems with quadrupole moment. The amplitude of gravitational waves is expected to be very small, so the best chance of their direct detection lies with some of the most energetic events in the universe, such as mergers of two neutron stars or black holes, Supernova explosions, or the BigBang itself. I will review the status of current gravitationalwave detectors, such as the Laser Interferometer Gravitationalwave Observatory (LIGO), as well as some of the most recent results obtained using LIGO data. I will also discuss plans and expectations for the future generations of gravitationalwave detectors. Continue reading… Astrophysics with GravitationalWave Detectors – Vuk Mandic 
New and Old Massive Gravity – Claudia de Rham  Tue. February 1st, 2011 11:30 am12:30 pm 
TBA Continue reading… New and Old Massive Gravity – Claudia de Rham 
A new method for cosmological parameter estimation from Supernovae Type Ia data – Marisa March  Tue. January 18th, 2011 11:30 am12:30 pm 
We present a new methodology to extract constraints on cosmological parameters from SNIa data obtained with the SALT lightcurve fitter. The power of our Bayesian method lies in its full exploitation of relevant prior information, which is ignored by the usual chisquare approach. Using realistic simulated data sets we demonstrate that our method outperforms the usual chisquare approach 2/3 of the times. A further benefit of our methodology is its ability to produce a posterior probability distribution for the intrinsic dispersion of SNe. This feature can also be used to detect hidden systematics in the data. 
Kessence Interactions with Neutrinos: Flavor Oscillations without Mass – Christopher Gauthier  Tue. December 7th, 2010 11:30 am12:30 pm 
In this talk we discuss a novel means of coupling neutrinos to a Lorentz violating background kessence field. Kessence is a model of dark energy, which uses a noncanonical scalar field to drive the late time accelerated expansion of the universe. We propose that neutrinos couple to the kessence induced metric rather than the spacetime metric. The immediate effect that this has will be to modify the energymomentum relation of the neutrino. This implies that the neutrino velocity will in general be different from the speed of light, even if the neutrino is massless. Later we will see that kessence can also induce neutrino oscillations even without a neutrino mass term. 
Light from Cosmic Strings – Tanmay Vachaspati  Tue. November 16th, 2010 11:30 am12:30 pm 
TBA Continue reading… Light from Cosmic Strings – Tanmay Vachaspati 
Testing the NoHair Theorem with Astrophysical Black Holes – Dmitrios Psaltis  Tue. November 2nd, 2010 11:30 am12:30 pm 
The Kerr spacetime of spinning black holes is one of the most intriguing predictions of Einstein’s theory of general relativity. The special role this spacetime plays in the theory of gravity is encapsulated in the nohair theorem, which states that the Kerr metric is the only realistic blackhole solution of the vacuum field equations. Recent and anticipated advances in the observations of black holes throughout the electromagnetic spectrum have secured our understanding of their basic properties while opening up new opportunities for devising tests of the Kerr metric. In this talk, I will show how imaging and spectroscopic observations of accreting blackholes with current and future instruments can lead to the first direct test of the nohair theorem with an astrophysical object. Continue reading… Testing the NoHair Theorem with Astrophysical Black Holes – Dmitrios Psaltis 
Cosmological Constraints from Peculiar Velocities – Arthur Kosowski  Fri. October 29th, 2010 11:30 am12:30 pm 
Peculiar velocities of galaxies and clusters are induced during the formation of structure in the universe via gravitational forces. As such, they provide a potentially powerful route to constraining both the growth of structure and the expansion history of the universe. Traditional methods of velocity determination have not yet been able to measure velocities at cosmological distances with sufficient accuracy to allow cosmological constraints. I will discuss two possible methods of measuring peculiar velocities: directly via the kinematic SunyaevZeldovich effect for galaxy clusters, and using distance measurements of typeIa supernovae in future large surveys. I will discuss measurement prospects, and show that upcoming probes of mean pairwise velocity will have the potential to plac significant constraints on both dark energy and modifications of gravity while limiting systematic errors Continue reading… Cosmological Constraints from Peculiar Velocities – Arthur Kosowski 
IR issues in Inflation – Richard Holman  Fri. October 15th, 2010 11:30 am12:30 pm 
I review some problems involving IR divergences in de Sitter space that give rise to behavior such as secular growth of fluctuations and discuss the use of the Dynamical Renormalization Group as a tool to resum and reinterpret these divergences. Time permitting, I’ll also discuss some more recent work on the breakdown of the semiclassical approximation in de Sitter space. 
The Angular Distribution of the HighestEnergy Cosmic Rays – Andrew Jaffe  Tue. October 12th, 2010 11:30 am12:30 pm 
TBA Continue reading… The Angular Distribution of the HighestEnergy Cosmic Rays – Andrew Jaffe 
Bulk viscosity and the damping of neutron star oscillations – Mark Alford  Fri. October 8th, 2010 11:30 am12:30 pm 
How do we learn about the phases of matter beyond nuclear density? They are to be found only in the interior of neutron stars, which are inaccessible and hard to observe. One approach is through the oscillations of neutron stars, which depend on the viscosity of their interior. If the viscosity is low enough then “rmode” oscillations arise spontaneously and cause the star to spin down. Finding fastspinning stars therefore puts limits on the viscosity viscosity and hence on the possible phases present in the interior of the star. This talk discusses nonlinear effects which arise for large amplitude “suprathermal” Continue reading… Bulk viscosity and the damping of neutron star oscillations – Mark Alford 
CMB in a Box – Raul Abramo  Tue. September 28th, 2010 11:30 am12:30 pm 
First, I will show that the lineofsight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to positionspace solutions which only depend on the sources of anisotropies inside the past lightcone of the observer. This happens order by order in a series expansion in powers of the visibility function. Second, I will show that the FourierBessel expansion of the physical fields (including the temperature and polarization momenta) is superior to the usual Fourier basis as a framework to compute the anisotropies. In that expansion, for each multipole $l$ there is a discrete tower of momenta $k_{i,l}$ (not a continuum) which can affect physical observables, 
Does Quantum Mechanics Imply Gravity? – Harsh Mathur  Tue. September 21st, 2010 11:30 am12:30 pm 
TBA Continue reading… Does Quantum Mechanics Imply Gravity? – Harsh Mathur 
Galileon Inflation and NonGaussianities – Andrew Tolley  Tue. September 7th, 2010 11:30 am12:30 pm 
I will discuss a new class of inflationary models based upon the idea of Galileon fields, scalar fields that exhibit nonlinearly realized symmetries. These models predict distinctive nonGaussian features in the primordial power spectrum, and I will discuss how they relate with, and can be distinguished from, canonical inflation, kinflation, ghost inflation, and DBIinflationary models. Continue reading… Galileon Inflation and NonGaussianities – Andrew Tolley 
Michelson Lectures — HighEnergy Physics with LowEnergy Symmetry Studies – David Hanneke  Fri. May 14th, 2010 11:30 am12:30 pm 
Discrete symmetries — charge conjugation (C), parity inversion (P), time reversal (T), and their combinations — provide insight into the structure of our physical theories. Many extensions to the Standard Model predict symmetry violations beyond those already known. From the first evidence of Pviolation in the 1950s using cold atoms, lowenergy, highprecision experiments have quantified existing violations and constrained further ones. In this lecture, I will describe several searches for discrete symmetry violations with lowenergy experiments. Tviolation, closely related to matter/antimatter asymmetry through the CPT theorem, is tightly constrained by searches for intrinsic electric dipole moments. CPTviolation — the only combination of these symmetries obeyed by the entire Standard Model — 
Michelson Lectures — Cavity Control in a SingleElectron Quantum Cyclotron: An Improved Measurement of the Electron Magnetic Moment – David Hanneke  Thu. May 13th, 2010 11:30 am12:30 pm 
Measurements of the electron magnetic moment (the “gvalue”) probe the electron’s interaction with the fluctuating vacuum. With a quantum electrodynamics calculation, they provide the most accurate determination of the fine structure constant. Comparisons with independent determinations of the fine structure constant are the most precise tests of quantum electrodynamics and probe extensions to the Standard Model of particle physics. I will present two new measurements of the electron magnetic moment. The second, at a relative uncertainty of 0.28 partspertrillion, yields a value of the fine structure constant with a relative accuracy of 0.37 partsperbillion, over 10times smaller uncertainty than the nextbest methods. 
Michelson Lectures — Optical Atomic Clocks – David Hanneke  Tue. May 11th, 2010 11:30 am12:30 pm 
The most precise measurement techniques involve time, frequency, or a frequency ratio. For example, for centuries, accurate navigation has relied on precise timekeeping — a trend that continues with today’s global positioning system. After briefly reviewing the current microwave frequency standards based on the hyperfine structure of cesium, I will describe work towards atomic clocks working at optical frequencies. Among these are standards based on trapped ions or on neutral atoms trapped in an optical lattice. A frequency comb allows the comparison of different optical frequencies and the linking of optical frequencies to moreeasilycounted microwave ones. Though still in the basic research stage, Continue reading… Michelson Lectures — Optical Atomic Clocks – David Hanneke 
Michelson Lectures — Entangled Mechanical Oscillators and a Programmable Quantum Computer: Adventures in Coupling TwoLevel Systems to Quantum Harmonic Oscillators – David Hanneke  Mon. May 10th, 2010 11:30 am12:30 pm 
The twolevel system and the harmonic oscillator are among the simplest analyzed with quantum mechanics, yet they display a rich set of behaviors. Quantum information science is based on manipulating the states of twolevel systems, called quantum bits or qubits. Coupling twolevel systems to harmonic oscillators allows the generation of interesting motional states. When isolated from the environment, trapped atomic ions can take on both of these behaviors. The twolevel system is formed from a pair of internal states, which lasers efficiently prepare, manipulate, and readout. The ions’ motion in the trap is well described as a harmonic oscillator and can be cooled to the quantum ground state. 
Cosmological Bubbles and Solitons: A Classic(al) Effect – Tom Giblin  Tue. April 27th, 2010 11:30 am12:30 pm 
Cosmological bubble collisions arising from first order phase transitions are a generic consequence of the Eternal Inflation scenario. I will present our computational strategy for generating and evolving these bubbles in 3+1 dimensions and in a selfconsistently expanding background. I will show the existence of classical field transitions–the classical nucleation of bubbles during collisions–which can dramatically alter the canonical description of eternal inflation. Continue reading… Cosmological Bubbles and Solitons: A Classic(al) Effect – Tom Giblin 
CP Violation in Bs>J/psi phi: Evidence for New Physics? – Karen Gibson  Tue. April 13th, 2010 11:30 am12:30 pm 
CP violation in the Bs>J/psi phi system has been one of the most discussed topics in particle physics in the past two years, in large part due to anomalously high, although statistically limited, measurements of the CP violating phase made by the Tevatron experiments. The measurement of this CP phase has been a highlight of the late Run II Tevatron physics effort and it’s precise determination is the flagship analysis of the LHCb program. I will present the physics interest in CP violation in the Bs system, give an overview of the past and present results from the Tevatron experiments, Continue reading… CP Violation in Bs>J/psi phi: Evidence for New Physics? – Karen Gibson 
Quantum Effects in Gravitational Collapse of a ReisnerNordström Domain wall  Tue. April 6th, 2010 11:30 am12:30 pm 
We will investigate the formation of RN black holes by studying the collapse of a charged spherically symmetric domain wall. Utilizing the Functional Schrödinger formalism, we will also investigate timedependent thermodynamic properties of the collapse and compare with the well known theoretical results. Continue reading… Quantum Effects in Gravitational Collapse of a ReisnerNordström Domain wall 
String theory cosmic strings – Dimitri P. Skliros  Tue. March 30th, 2010 11:30 am12:30 pm 
I will discuss the first construction of coherent states in the covariant formalism for both open and closed strings with applications to cosmic strings in mind. Furthermore, I provide an explicit map that relates three different descriptions of cosmic strings: classical strings, lightcone gauge quantum states and covariant vertex operators. I will then go on to discuss applications and future directions: string amplitude computations with such vertices and in particular decays of (the phenomenologically promising) cosmic strings with nondegenerate cusps in a framework that naturally incorporates the effects of gravitational backreaction. Partly based on: http://arxiv.org/abs/0911.5354 Continue reading… String theory cosmic strings – Dimitri P. Skliros 
Tunneling in Flux Compactifications – Jose BlancoPillado  Tue. March 23rd, 2010 11:30 am12:30 pm 
We identify instantons representing several different transitions in a field theory toy model for string theory flux compactifications and described the observational signatures of such processes. Continue reading… Tunneling in Flux Compactifications – Jose BlancoPillado 
Primordial magnetic fields: evolution and observable signatures – Tina Kahniashvili  Tue. March 16th, 2010 11:30 am12:30 pm 
I will discuss the evolution of the primordial magnetic field accounting for MHD instabilities in the early Universe. I will address different cosmological signatures of the primordial magnetic fields and will discuss the observational tests to limit the amplitude and correlation length of the magnetic fields, as well as their detection prospects. 
ArDM Experiment – Carmen Carmona  Tue. March 2nd, 2010 11:30 am12:30 pm 
The Argon Dark Matter (ArDM) project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. It consists on a oneton liquid argon detector able to read independently ionization charge and scintillation light. I will describe the experimental concept and the physics performance of the ArDM experiment, which is presently under construction and commissioning on surface at CERN. 
A Theory Program to Exploit Weak Gravitational Lensing to Constrain Dark Energy – Andrew Zentner  Fri. February 26th, 2010 11:30 am12:30 pm 
Weak gravitational lensing is one of the most promising techniques to constrain the dark energy that drives the contemporary cosmic acceleration. I give an overview of the dark energy problem, focusing on the manner in which weak gravitational lensing can determine the nature of the dark energy. Bringing lensing constraints to fruition is challenging both observationally and theoretically. I will focus on the theoretical challenges. The most demanding of these is to make accurate predictions for the power spectrum of density fluctuations on nonlinear scales, including treatments of baryonic processes such as galaxy formation, that have been neglected in much of the literature. 
Shedding light on the nature of dark matter with gammarays – Jennifer SiegalGaskins  Tue. February 23rd, 2010 11:30 am12:30 pm 
Detection of gamma rays from the annihilation or decay of dark matter particles is a promising method for identifying dark matter, understanding its intrinsic properties, and mapping its distribution in the universe. I will review recent results from the Fermi Gammaray Space Telescope and other experiments and discuss the constraints these place on particle dark matter models. I will also present a novel approach to extracting a dark matter signal from Fermi gammaray observations using the energydependence of anisotropies in a sky map of the diffuse emission. The sensitivity of this technique and its prospects for robustly identifying a dark matter signal in Fermi data will be discussed. 
Nongaussianities and the Inflationary Initial State – Andrew Tolley  Fri. February 19th, 2010 11:30 am12:30 pm 
The potential discovery of primordial nongaussianities would revolutionize our understanding of early universe cosmology, giving a whole new perspective on the physics responsible for inflation. I will review the different possible physical mechanisms that can give rise to nongaussianities, and discuss in detail those which are distinctive in telling us about the inflationary quantum state. In particular, I will show how consistency conditions coming from effective field theory can be used to constrain the level of nongaussianity that we can hope to observe in future data. Continue reading… Nongaussianities and the Inflationary Initial State – Andrew Tolley 
Dark Matter via Many Copies of the Standard Model – Alex Vikman  Tue. February 16th, 2010 11:30 am12:30 pm 
Recently it was realized that the strong coupling scale in gravity substantially depends on the number of different quantum fields present in nature. On the other hand, gravity theory with an electroweak strong coupling scale could be responsible for a solution of the hierarchy problem. Consequently it was suggested that possible existence of very many hidden fields could stabilize the mass of Higgs particle. In this talk I review a cosmological scenario based on the assumption that the Standard Model possesses a large number of copies. It is demonstrated that baryons in the hidden copies of the standard model can naturally account for the dark matter. Continue reading… Dark Matter via Many Copies of the Standard Model – Alex Vikman 
Hierarchy in the Phase Space and Dark Matter Astronomy – Niayesh Afshordi  Fri. February 12th, 2010 11:30 am12:30 pm 
Understanding small scale structure in the dark matter distribution is important in interpreting many astrophysical observations, as well as dark matter (direct or indirect) detection searches. With this motivation, I introduce a theoretical framework for describing the rich hierarchy of the phase space of cold dark matter haloes, due to gravitationally bound substructures, as well as tidal debris and caustics. I then argue that if/when we detect dark matter particles, a new era of Dark Matter Astronomy will be just around the corner. Continue reading… Hierarchy in the Phase Space and Dark Matter Astronomy – Niayesh Afshordi 
Shading Lambda – Claudia de Rahm  Tue. February 2nd, 2010 11:30 am12:30 pm 
The idea of degravitation is to tackle the cosmological constant problem by modifying gravity at large distances such that a large cosmological constant does not backreact as much as anticipated from standard General Relativity. After reviewing the fundamental aspects of degravitation, I will present a new class of theories of massive gravity capable of exihibiting the degravitation behaviour. I will then comment on the stability of such models and show in the decoupling limit how theories of gravity with at least two additional helicity0 excitations can provide a stable realization of degravitation. 
Dark Matter Substructure in the Milky Way: Properties and Detection Prospects – Louie Strigari  Tue. January 26th, 2010 11:30 am12:30 pm 
Cosmological observations have converged on a standard model of LambdaCold Dark Matter (LCDM), in which the Universe is dominated by yet unknown components of dark matter and dark energy. When confronted with observations of our own Milky Way, this theory of LCDM leads to the prediction of a significant population of bound, unseen dark matter substructures, ranging possibly from Earth mass scales up to observed dwarf galaxy mass scales. In this talk, I will discuss the theory of LCDM and substructure in the context of present and forthcoming deep galaxy surveys, and show how these observations may be used to provide detailed predictions for the abundance and mass spectrum of dark substructures. 
On triviality of $\lambda\phi^{4}$ theory in $D=4$ – Dmitry Podolsky  Tue. January 19th, 2010 11:30 am12:30 pm 
e introduce a new nonperturbative method suitable for analyzing scalar quantum field theories at strong coupling based on mapping between quantum field theories in $dS_{D}\times M_{N}$ spacetime and statistical field theories in Euclidean space $M_{N}$. Applying this method to $\lambda\phi^{4}$ theory in $dS_{D}\times E_{4}$ spacetime, we analyze behavior of the 4dimensional $\lambda\phi^{4}$ theory in the regime $\lambda\sim{}1$ and give a new argument in favor of triviality of the theory. Continue reading… On triviality of $\lambda\phi^{4}$ theory in $D=4$ – Dmitry Podolsky 
Pulsar Kicks With Active and Sterile Neutrinos – Leonard Kisslinger  Fri. December 4th, 2009 11:30 am12:30 pm 
In 2007 my coworkers and I completed the calculation of the velocity given to a neutron star in the period of 1020 seconds after the gravitational collapse of a massive star by active neutrinos. This year an analysis of neutrino data has shown that there exist sterile neutrinos with large mixing angles. We have calculated the velocity that the emission of such sterile neutrinos in the 010 second period would give to the neutron star (the pulsar). We are applying this to calculate the velocity of the neutron star that might have been formed by SN 1987A. We are also engaged in calculating sterile neutrino prosesses during a supernova collapse to see if the stalled shock can be unstalled. Continue reading… Pulsar Kicks With Active and Sterile Neutrinos – Leonard Kisslinger 
Nongaussian Fluctuations from Particle Production During Inflation – Neil Barnaby  Tue. November 24th, 2009 11:30 am12:30 pm 
In a variety of inflation models, the motion of the inflaton may trigger the production of some isocurvature particles during inflation, for example via parametric resonance or a phase transition. Inflationary particle production provides a new mechanism for generating cosmological perturbations (infrared cascading) and can also slow the motion of the inflaton on a steep potential. Moreover, such models provide a novel example of nondecoupling of high scale physics during inflation. I will discuss the observational consequences of inflationary particle production, including the generation of features in the primordial power spectrum and large nongaussianities with a unique shape of bispectrum. Continue reading… Nongaussian Fluctuations from Particle Production During Inflation – Neil Barnaby 
Gravitational Waves, Laser Interferometers and Multimessenger Astrophysics – Laura Cadonati  Tue. November 10th, 2009 11:30 am12:30 pm 
The Laser Interferometer Gravitationalwave Observatory (LIGO) and its sister project Virgo are currently acquiring data, aiming at the first direct detection of gravitational waves. These elusive ripples in the fabric of spacetime, carriers of information on the acceleration of large masses, are a key prediction of General Relativity; their detection will activate a fundamental, new probe into the universe. Sources of interest for LIGO/Virgo include the coalescence of compact binary systems, corecollapse supernovae and the stochastic background from the early universe, as well as multimessenger coincident signatures with electromagnetic or neutrino counterparts. In this talk, I will present the status of groundbased gravitational wave detectors and review the most significant observational results obtained so far. 
Three thoughts about black holes and cosmology – Latham Boyle  Tue. November 3rd, 2009 11:30 am12:30 pm 
I will present three ideas about black holes and cosmology. First, I will discuss a way of understanding the simple patterns which emerge from the notoriously thorny numerical simulations of binary black hole merger, and some of the directions where this understanding may lead. Second, I will suggest a sequence of practical bootstrap tests designed to give sharp observational confirmation of the essential idea underlying the inflationary paradigm: that the universe underwent a period of accelerated expansion followed by a long period of decelerated expansion. Third, I will investigate a way that one might try to detect the strong bending of light rays in the vicinity of a black hole. Continue reading… Three thoughts about black holes and cosmology – Latham Boyle 
Using anisotropy to identify a dark matter signal in diffuse gammaray emission with Fermi – Jennifer SiegalGaskins  Tue. October 20th, 2009 11:30 am12:30 pm 
Dark matter annihilation in Galactic substructure will produce diffuse gammaray emission of remarkably constant intensity across the sky, making it difficult to disentangle this Galactic dark matter signal from the extragalactic gammaray background. Recent studies have considered the angular power spectrum of the diffuse emission from various extragalactic source classes and from Galactic dark matter. I’ll discuss these results and show how the energy dependence of anisotropies in the total measured diffuse emission could be used to confidently identify a signal from dark matter in Fermi data. Finally, I’ll present new results demonstrating that anisotropy analysis could significantly extend the sensitivity of current indirect dark matter searches. 
Measuring small scale CMB temperature and polarization anisotropies with the Atacama Cosmology Telescope – Mike Niemack  Fri. October 16th, 2009 11:30 am12:30 pm 
The Atacama Cosmology Telescope (ACT) is a sixmeter telescope on the Atacama plateau, Chile that was built to characterize the cosmic microwave background (CMB) with arcminute resolution. Since 2008 ACT has been used to measure the temperature anisotropies in the CMB in three bands between 140 – 300 GHz with the largest arrays of transitionedge sensor (TES) bolometers ever fielded for CMB observations. Two of the primary science objectives for these measurements are: detecting galaxy clusters via the SunyaevZel’dovich effect, which can be used to study the dark energy equation of state when combined with optical redshifts, and measuring the CMB power spectrum at high multipoles to improve constraints on cosmological parameters. 
New Perspectives on Indirect, Astrophysical Dark Matter Limits – Andrew Zentner  Fri. October 9th, 2009 11:30 am12:30 pm 
HighEnergy neutrinos from the annihilations of dark matter captured within the Sun is thought to be a relatively clean, indirect probe of dark matter physics. In addition, this probe is sensitive to the dark matterproton cross section so it can be used to crosscheck direct searches, and does not rely on a large annihilation cross section in order to be observed in nearterm experiments such as IceCube. I will consider a modification of the standard scenario. Dark matter that interacts strongly with itself as has been proposed in several contexts. I show that viable models of selfinteracting dark matter can lead to large boosts in the expected neutrino flux from the Sun, Continue reading… New Perspectives on Indirect, Astrophysical Dark Matter Limits – Andrew Zentner 
CMB Polarization Power Spectra from Two Years of BICEP Data – Cynthia Chiang  Tue. September 22nd, 2009 11:30 am12:30 pm 
BICEP is a bolometric polarimeter designed to measure the inflationary Bmode polarization of the cosmic microwave background at degree angular scales. During three seasons of observing at the South Pole (2006–2008), BICEP mapped ~2% of the sky chosen to be uniquely clean of polarized foreground emission. I will discuss the initial maps and angular power spectra derived from a subset of the data acquired during the first two years, and I will describe in detail the analysis methods and studies of potential systematic errors. BICEP measures the Emode power spectrum with high precision at 21 < ell < 335 and detects the acoustic peak expected at ell ~ 140 for the first time. Continue reading… CMB Polarization Power Spectra from Two Years of BICEP Data – Cynthia Chiang 
Cryogenic Dark Matter Search . Current Results and Future Background Discrimination – Cathy Bailey  Tue. May 5th, 2009 11:30 am12:30 pm 
The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic germanium particle detectors. These detectors discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS II experiment has completed analysis of the first data run with 30 semiconductor detectors at the Soudan Underground Laboratory resulting in a world leading WIMPnucleon spinindependent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. 
String shots from a spinning black hole – Ted Jacobson  Fri. April 24th, 2009 11:30 am12:30 pm 
The dynamics of relativistic current carrying string loops moving axisymmetrically on the background of a Kerr black hole are characterized. In one interesting type of motion, a loop can be ejected along the axis, some internal elastic or rotational kinetic energy being converted into translational kinetic energy. Continue reading… String shots from a spinning black hole – Ted Jacobson 
Fundamentals of the LHC – Johan Alwall  Tue. April 14th, 2009 11:30 am12:30 pm 
In this introductory lecture I will present why we have built the LHC, and discuss the underlying physics of a hadron collider. This includes the fundamentals of QCD (the theory for the strong interaction), features such as jets and hadronization, and an introduction to the physics of the Standard Model, including Electroweak symmetry breaking. The lecture will be concluded with a discussion about the problems with the Standard Model. 
The curvaton inflationary model, nonGaussianity and isocurvature – Maria Beltran  Tue. March 31st, 2009 11:30 am12:30 pm 
The inflationary paradigm has become one of the most compelling candidates to explain the observed cosmological phenomena. However, the data is still inconclusive about the particular details of the inflationary model. Apart from the basic, single field model, there exists a wide range of currently undistinguishable possibilities for the scalar field number, potential and couplings during the early universe. In this talk I will review one of these extensions of the basic inflationary model, the curvaton model, where at least two scalar fields are present during inflation. I will revisit the constraints on the parameters of the model in light of the results of recent nonGaussianity analyses and bounds on the cold dark matter isocurvature contribution in the primordial anisotropies of the CMB. Continue reading… The curvaton inflationary model, nonGaussianity and isocurvature – Maria Beltran 
LargeScale Structure in Modified Gravity – Roman Scoccimarro  Fri. March 27th, 2009 11:30 am12:30 pm 
Cosmic acceleration may be due to modifications of general relativity (GR) at large scales, rather than dark energy. We use analytic techniques and Nbody simulations to find out what observational signatures to expect in braneinduced gravity, with focus on new nonlinear effects not present in GR. Continue reading… LargeScale Structure in Modified Gravity – Roman Scoccimarro 
Dark Stars – Katie Freese  Tue. March 17th, 2009 11:30 am12:30 pm 
We have proposed that the first phase of stellar evolution in the history of the Universe may be Dark Stars (DS), powered by dark matter heating rather than by nuclear fusion. Weakly Interacting Massive Particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a Dark Star, powered by dark matter annihilation as long as there is dark matter fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (a million times solar) diffuse puffy objects during the DS phase, 
Cascading Gravity and Degravitation – Claudia de Rham  Tue. March 3rd, 2009 11:30 am12:30 pm 
Cascading gravity is an explicit realization of the idea of degravitation, where gravity behaves as a highpass filter. This could explain why a large cosmological constant does not backreact as much as anticipated from standard General Relativity. The model relies on the presence of at least two infinite extra dimensions while our world is confined on a fourdimensional brane. Gravity is then fourdimensional at short distances and becomes weaker at larger distances. Continue reading… Cascading Gravity and Degravitation – Claudia de Rham 
Testing global isotropy and some interesting cosmological models with CMB – Amir Hajian  Tue. February 24th, 2009 11:30 am12:30 pm 
Simplest models of the Universe predict global (statistical) isotropy on large scales in the observable Universe. However there are a number of interesting models that predict existence of preferred directions. In this talk I will present results of using CMB anisotropy maps to test the global isotropy of the Universe on its largest scales, and will show how that can help us constrain interesting models such as topology of the Universe and anisotropic cosmological models (e.g. Bianchi models). I will also discuss the intriguing lack of power on large angular scales in the observed CMB maps and implications that it may have for cosmology. 
Hilltop Quintessence – Sourish Dutta  Tue. February 17th, 2009 11:30 am12:30 pm 
We examine hilltop quintessence models, in which the scalar field is rolling near a local maximum in the potential, and w is close to 1. We first derive a general equation for the evolution of the scalar field in the limit where w is close to 1. We solve this equation for the case of hilltop quintessence to derive w as a function of the scale factor; these solutions depend on the curvature of the potential near its maximum. Our general result is in excellent agreement (delta w < 0.5%) with all of the particular cases examined. It works particularly well (delta w < 
Can the WMAP Haze really be a signature of annihilating neutralino dark matter? – Daniel Cumberbatch  Tue. February 3rd, 2009 11:30 am12:30 pm 
Observations by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite have identified an excess of microwave emission from the centre of the Milky Way. It has been suggested that this {\it WMAP haze} emission could potentially be synchrotron emission from relativistic electrons and positrons produced in the annihilations of one (or more) species of dark matter particles. In this paper we recalculate the intensity and morphology of the WMAP haze using a multilinear regression involving fullsky templates of the dominant forms of galactic foreground emission, using two different CMB sky signal estimators. The first estimator is a posterior mean CMB map, 
Multibrane Inflation in String Theory – Amjad Ashoorioon  Tue. January 27th, 2009 11:30 am12:30 pm 
I will talk about two inflationary scenarios in which the cooperative behavior of multiple branes give rise to inflation. In the first one, which we call cascade inflation, assisted inflation is realized in heterotic Mtheory and by nonperturbative interactions of N M5branes. The features in the inflaton potential are generated whenever two M5branes collide with the boundaries. The derived smallscale power suppression could serves as a possible explanation for the dearth of observed dwarf galaxies in the Milky Way halo. In the second one, the transverse dimension of coincident D3branes, which are Ndimensional matrices, result in inflation. We discuss how various scenarios such as chaotic, Continue reading… Multibrane Inflation in String Theory – Amjad Ashoorioon 
High temperature superfluidity in high energy heavy ion collisions at RHIC and forward physics with TOTEM at LHC – Tamas Csorgo  Tue. January 13th, 2009 11:30 am12:30 pm 
Five important milestones have been achieved in high energy heavy ion collisions utilitizing the Relativistic Heavy Ion Collider at BNL: – a new phenomena – which was proven to signal a new state of matter – this state of matter was found to be a perfect fluid, with temperatures reaching 2 terakelvins and more – the degrees of freedom were shown to be the quarks – and the kinematic viscosity of this matter at extemely high temperatures were found to be less than that of a superfluid 4He at the onset of superfluidity. I will summarize these milestones and some more recent novel results of the RHIC programme and also outline an interesting new direction, 
Anthropy and entropy – Irit Maor  Tue. November 25th, 2008 11:30 am12:30 pm 
TBA 
On the Challenge to Unveil the Microscopic Nature of Dark Matter – Scott Watson  Tue. November 18th, 2008 11:30 am12:30 pm 
Despite the successes of modern precision cosmology to measure the macroscopic properties of dark matter, its microscopic nature still remains elusive. LHC is expected to probe energies relevant for testing theories of electroweak symmetry breaking, and as a result may allow us to produce dark matter for the first time. Other indirect experiments, such as PAMELA, offer additional ways to probe the microscopic nature of dark matter through observations of cosmic rays. Results from a number of indirect detection experiments seem to suggest that our old views of the creation of dark matter may need revisited. This is also suggested by theories of electroweak symmetry breaking that are required to be well behaved at high energies and in the presence of gravity. Continue reading… On the Challenge to Unveil the Microscopic Nature of Dark Matter – Scott Watson 
South Pole Telescope: From conception to first discovery – Zak Staniszewski  Tue. October 21st, 2008 11:30 am12:30 pm 
The South Pole Telescope recently discovered three new galaxy clusters in their CMB maps via the Sunyaev Zel’dovich (SZ) effect (Staniszewski et al. 2008). These are the first galaxy clusters discovered using this promising new technique. The number of galaxy clusters at a given redshift depends strongly on the expansion history of the universe as well as the relative abundances of matter, dark matter and dark energy during structure formation. The brightness of the SZ signal from a galaxy cluster is nearly redshift independent, making it a powerful tool for discovering galaxy clusters that were forming when dark energy was becoming important. Continue reading… South Pole Telescope: From conception to first discovery – Zak Staniszewski 
Primordial Nongaussianity and LargeScale Structure – Dragan Huterer  Fri. October 17th, 2008 11:30 am12:30 pm 
The nearabsence of primordial nongaussianity is one of the basic predictions of slow roll, singlefield inflation, making measurements of nongaussianity fundamental tests of the physics of the early universe. I first review parametrizations of nongaussianity and briefly review the history of its measurements from the CMB and largescale structure. I then present results from recent work where effects of primordial nongaussianity on the distribution of largest virialized objects was studied numerically and analytically. We found that the bias of dark matter halos takes strong scale dependence in nongaussian cosmological models. Therefore, measurements of scale dependence of the bias, using various tracers of largescale structure, Continue reading… Primordial Nongaussianity and LargeScale Structure – Dragan Huterer 
In Search of the Coolest White Dwarfs – Evalyn I.Gates  Tue. October 14th, 2008 11:30 am12:30 pm 
Cool white dwarf stars are among the oldest objects in the Galaxy. These relics of an ancient stellar population offer a window into the early stages of the galaxy and its formation, and more data on the oldest and coolest white dwarfs may help resolve the interpretation of microlensing searches for MACHOs in the galactic halo. The Sloan Digital Sky Survey (SDSS) and the SEGUE program of SDSSII are ideally suited to a search for these rare objects, and to date we have discovered 13 new ultracool white dwarfs =96 those with temperatures below 4000K =96 constituting the majority of these faint stellar fossils. Continue reading… In Search of the Coolest White Dwarfs – Evalyn I.Gates 
The White Elephant: Upsilon Physics at the BaBar Bfactory – Steve Sekula  Tue. October 7th, 2008 11:30 am12:30 pm 
For a decade, the PEPII/BaBar Bfactory has been a flagship experiment in precision measurements in the flavor sector, notably in the decays of B and charm mesons. Before its shutdown in April, the Bfactory took a new direction and secured the world’s largest samples of Upsilon(3S) and Upsilon(2S) mesons and performed an extensive scan above the Upsilon(4S) resonance. I will talk about the motivation for this change of course and our new results in both the search for the ground state of bottomonium and the search for evidence of new physics at a low mass scale, including both the Higgs and dark matter. Continue reading… The White Elephant: Upsilon Physics at the BaBar Bfactory – Steve Sekula 
Parameterizing dark energy – Zhiqi Huang  Tue. September 16th, 2008 11:30 am12:30 pm 
Dark energy is parameterized by the time evolution of its equation of state $w(z)$. For a very wide class of quintessence (and phantom) dark energy models, we parameterize $w(z)$ with physical quantities related to the scalar field potential and initial conditions. Using a set of updated observational data including supernova, CMB, galaxy power spectrum, weak lensing and Lyman${\alpha}$ forest, we run Markov Chain Monte Carlo calculations to determine the likelihood of cosmological parameters including the new dynamical parameters. The best fit model is centered around the cosmological constant (flat potential), while many popular scalar field models are excluded at different levels. 
The effect of dark matter halos on reionization and the H21 cm line – Aravind Natarajan  Fri. September 5th, 2008 11:30 am12:30 pm 
If much of the dark matter in the Universe consists of WIMPs, their annihilation releases energy, some of which ionizes the IGM. We calculate the contribution to the optical depth due to particle annihilation in early halos. This allows us to place bounds on the dark matter particle mass. We also consider the effect of halos on the H21 cm background. It is shown that larger halos (~ 10^6 solar masses) contain enough hot Hydrogen gas to produce a measurable H21 cm background. We present our conclusions. 
Probing dark energy with cosmology – Roberto Trotta  Tue. May 6th, 2008 11:30 am12:30 pm 
In order to pin down the fundamental nature of dark energy, and thus to understand what most of the Universe is actually made of, new and more precise observations are required, along with more efficient and reliable statistical techniques to interpret those observations correctly and to understand the implications they have for our theoretical models of the Universe. The outstanding challenge posed by the nature and properties of dark energy is giving rise to a flourishing of proposals for new observational campaigns. Type Ia supernovae, gravitational lensing, cluster counts and baryonic acoustic oscillations are some of the techniques available to study dark energy, Continue reading… Probing dark energy with cosmology – Roberto Trotta 
Astrophysics and Particle Physics with IceCube – Tyce DeYoung  Tue. April 8th, 2008 11:30 am12:30 pm 
The IceCube neutrino observatory under construction at the South Pole is designed to detect high energy (TeVPeV) neutrino emission from astrophysical objects, such as the sources of galactic and extragalactic cosmic rays. Data is being taken with the partially built detector, now half complete with 40 strings and 2400 optical modules, and initial results are now available. In addition to astrophysical studies, IceCube also has a broad particle physics program that will be enhanced by the addition of the IceCube Deep Core, a dense, contained subarray that will push IceCube’s energy reach down to 1020 GeV and improve its sensitivity to dark matter, Continue reading… Astrophysics and Particle Physics with IceCube – Tyce DeYoung 
UHECR Phenomenology – Glennys Farrar  Tue. March 18th, 2008 11:30 am12:30 pm 
I will review some very general properties that must characterize any relativistic UHECR accelerator, and I will list some key observational constraints on the accelerators. In combination these make it unlikely that any of the conventional source candidates can be solely responsible for the observed cosmic rays about about 60 EeV. I will describe a recently proposed new mechanism that is in excellent accord with the constraints and observations. I will describe how it can be tested using UHECRs and GLAST. 
Challenging the Cosmological Constant – Nemanja Kaloper  Thu. February 28th, 2008 11:30 am12:30 pm 
We outline a dynamical dark energy scenario whose signatures may be simultaneously tested by astronomical observations and laboratory experiments. The dark energy is a field with slightly subgravitational couplings to matter, a logarithmic self interaction potential with a scale tuned to ~ 10 3 eV, as is usual in quintessence models, and an effective mass m phi influenced by the environmental energy density. Among the signatures of this scenario may be dark energy equation of state w is not equal to 1, stronger gravity in dilute mediums, that may influence BBN and appear as an excess of dark matter, and sub millimeter corrections to Newton’s law, Continue reading… Challenging the Cosmological Constant – Nemanja Kaloper 
Observing Dark Energy with the Next Generation of Galaxy Surveys – Ofer Lahav  Tue. February 26th, 2008 11:30 am12:30 pm 
The talk will discuss the design and forecasting for measuring properties of Dark Energy and Dark Matter from new deep imaging surveys, in particular the “Dark Energy Survey” and the DUNE satellite. The effect of accuracy of photometric redshifts on the cosmological results will be assessed. Continue reading… Observing Dark Energy with the Next Generation of Galaxy Surveys – Ofer Lahav 
kEssence: superluminal propagation, causality and emergent geometry – Alexander Vikman  Tue. February 19th, 2008 11:30 am12:30 pm 
Kessence models – scalar field theories with nonquadratic kinetic terms – are considered candidates for dynamical dark energy and inflation. One of the most interesting features of these nonlinear theories is that perturbations around nontrivial backgrounds propagate with a speed different from the speed of light. In particular, superluminal propagation is possible. In my talk, I will review the kessence paradigm emphasizing the issues related to causality. I will show that superluminal propagation does not lead to any additional causal paradoxes over and above those already present in standard general relativity. I will end by presenting a model which allows the obtaining of information from beyond the horizon of a black hole. 
Physics Beyond the Horizon – Niayesh Afshordi  Tue. February 12th, 2008 4:30 pm5:30 pm 
The history of human knowledge is often highlighted by our efforts to explore beyond our apparent horizon. In this talk, I will describe how this challenge has now evolved into our quest to understand the physics at/beyond the cosmological horizon, some twenty orders of magnitude beyond Columbus’s original plan. I also argue why inflationary paradigm predicts the existence of nontrivial physics beyond the cosmological horizon, and how we can use the Integrated SachsWolfe effect in the Cosmic Microwave Background to probe this physics, which includes the nature of gravity and primordial nongaussianity on the horizon scale. Continue reading… Physics Beyond the Horizon – Niayesh Afshordi 
Demystifying the LargeScale Structure and Evolution of the Cosmos – Constantinos Skordis  Tue. February 5th, 2008 11:30 am12:30 pm 
In the last two decades, cosmology has undergone a revolution, with a large influx of high quality data. There is now a consensus cosmological standard model, LambdaCDM, based on General Relativity as the theory of gravity, and which requires only about 4% of the energy budget of the universe to be in known baryonic form. The rest is divided into two apparently distinct, dark components: Cold Dark Matter (CDM) and cosmological constant. The simplest explanation for CDM is a weakly interacting particle, still to be detected; he cosmological constant is the simplest term that can be added to the Einstein equations that can give rise to the observed accelerated expansion of the universe but has no compelling explanation within our current understanding of fundamental physics. 
Cosmological Unification of String Theories – Simeon Hellerman  Fri. January 18th, 2008 1:00 pm2:00 pm 
Recent developments have greatly extended our understanding of quantum gravity in cosmological environments. A new set of exact timedependent solutions has been found to the equations of motion of string theory, that interpolate among string theories of dramatically different character. These transitions dynamically alter features of the theory such as the degree of stability, the amount of supersymmetry, the number of dimensions of space itself, and the basic type of string. Taken together, these transitions fill out a web that unifies (almost) all known string theories into a single dynamical structure. Continue reading… Cosmological Unification of String Theories – Simeon Hellerman 
The Accelerating Universe: Landscape or Modified Gravity? – Sergei Dubovsky  Tue. January 15th, 2008 4:30 pm5:30 pm 
The most remarkable recent discovery in fundamental physics is that the Universe is undergoing accelerated expansion. To achieve a proper understanding of its physical origin forces us to make a hard choice between dynamical and enviromental scenarios. The first approach predicts the existence of a new long distance physics in the gravitational sector, while the second relies on the existence of the vast landscape of vacua with different values of the cosmological constant. I will discuss achievements and shortcomings of each of the approaches, and illustrate them in the concrete examples. Continue reading… The Accelerating Universe: Landscape or Modified Gravity? – Sergei Dubovsky 
Late Time Behavior of False Vacuum Decay – James Dent  Fri. December 7th, 2007 12:30 pm1:30 pm 
The late time behavior of decaying states is examined with regards to its deviation from the usual exponential form of decay. We will look at the origins of this wellestablished result in quantum mechanics and discuss the issues that arise in a field theory setting. An increase in the survival probability of a metastable state at large times finds applications in the context of cosmology, namely with regards to eternal inflation and the string theory landscape. Continue reading… Late Time Behavior of False Vacuum Decay – James Dent 
What do WMAP and SDSS really tell about inflation? – Wessel Valkenburg  Tue. December 4th, 2007 11:30 am12:30 pm 
We present new constraints on the Hubble function H(phi) and subsequently on the inflationary scalar potential V(phi) from WMAP 3year data combined with the Sloan Luminous Red Galaxy survey (SDSSLRG), using a new methodology which appears to be more generic, conservative and modelindependent than in most of the recent literature, since it depends neither on the slowroll approximation, nor on any extrapolation scheme for the potential beyond the observable efold range, nor on additional assumptions about initial conditions for the inflaton velocity. Besides these new constraints, we will briefly discuss the accuracy of the slowroll approximation in the light of present day observations, Continue reading… What do WMAP and SDSS really tell about inflation? – Wessel Valkenburg 
BekensteinSanders theory of modified gravity – Constantinos Skordis  Tue. November 27th, 2007 11:30 am12:30 pm 
TBA Continue reading… BekensteinSanders theory of modified gravity – Constantinos Skordis 
Gravitational Radiation from Supermassive Black Hole Binaries – Andrew Jaffe  Tue. November 20th, 2007 11:30 am12:30 pm 
Evidence for Supermassive Black Holes at the centers of galaxy bulges, combined with the paradigm of hierarchical structure formation, implies the existence of binary Supermassive Black Holes. It is expected that these binaries themselves will eventually coalesce in what would be the brightest gravitationalradiation events in the astrophysical universe. In this talk, we discuss the effect of the overall galaxy merger rate as well as dynamical processes at the centers of galaxies that might effect this scenario, in particular the socalled “final parsec problem” indicating that a significant fraction of the binaries may stall before they can coalesce. I discuss the theoretical prospects for resolving this problem, Continue reading… Gravitational Radiation from Supermassive Black Hole Binaries – Andrew Jaffe 
Scanning Inflation – Pascal Vaudrevange  Tue. November 20th, 2007 11:30 am12:30 pm 
The shapes of the primordial power spectra are the key quantities to unravel the physics of the inflationary epoch. We propose a new framework for parametrizing the spectra of primordial scalar and tensor perturbations, stressing the statistical trajectory nature of the relevant quantities and the importance of priors which can lead to spurious results like an apparent detection of tensor modes. We clarify the impact of prior probabilities, demonstrate strategies to adjust the prior distributions and as an example investigate a model inspired by high energy theory that exhibits intrinsic statistical elements. 
Sterile neutrinos as subdominant warm dark matter – Dan Cumberbatch  Tue. November 13th, 2007 11:30 am12:30 pm 
In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the DodelsonWidrow (DW) mechanism, my colleagues and I investigated the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We firstly studied how to reinterpret the limits attainable from Xray nondetection and Lymanalpha forest measurements in the case that steril e neutrinos constitute only a fraction ‘f_s’ of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the DW mechanism, Continue reading… Sterile neutrinos as subdominant warm dark matter – Dan Cumberbatch 
Baryogenesis, Electric Dipole Moments, and the Higgs Boson – Michael RamseyMusolf  Tue. October 30th, 2007 11:30 am12:30 pm 
Explaining the predominance of visible matter over antimatter remains one of the outstanding puzzles at the interface of cosmology with particle and nuclear physics. Although the Standard Model cannot account for the matterantimatter asymmetry, new physics at the electroweak scale may provide the solution. In this talk, I discuss the general requirements for successful electroweak scale baryogenesis; recent theoretical work in computations of the matterantimatter asymmetry; and implications for experimental searches for permanent electric dipole moments of the electron and neutron and for the Higgs boson at future colliders. Continue reading… Baryogenesis, Electric Dipole Moments, and the Higgs Boson – Michael RamseyMusolf 
Gravitational Breakthrough or Experimental Error? – Martin Tajmar  Wed. October 24th, 2007 11:30 am12:30 pm 
Accelerometer measurments indicate that a circular field is induced when the rotation rate of a Niobium superconducting ring changes. If found to be genuine, this would be the firstever gravitationallike field induced by controllable means. The field is measured inside the ring and its magnitude and direction opposes the ring’s angular acceleration. Since this observation does not match any theory, the emphasis is to carefully verify the observations. This seminar will describe the observations, experimental methods, and nextstep options. This includes data from independent experiments conducted at the University of Canterbury, NZ, where the world’s most accurate ringlasergyro was used to search for the noted effects, Continue reading… Gravitational Breakthrough or Experimental Error? – Martin Tajmar 
Extragalatic Cosmic Rays: a Prescription to Avoid Disaster – Corbin Covault  Tue. October 16th, 2007 11:30 am12:30 pm 
The origin of the highest energy cosmic rays has remained a persistent mystery for decades. Now we seem to be on the verge of getting a new handle on where in the universe these things come from. The Pierre Auger Observatory has been operating since 2004, and already we have some clear clues, including the energy spectrum and limits on photon flux that strongly suggest an extragalactic origin for the highest energy cosmic rays. More recently the unparalleled collecting area of Auger has been brought to bear on the question of potential correlations between particular astrophysical objects and cosmic ray arrival directions. Continue reading… Extragalatic Cosmic Rays: a Prescription to Avoid Disaster – Corbin Covault 
Dark matter, smallscale structure, and dwarf galaxies – Louie Strigari  Tue. September 4th, 2007 11:30 am12:30 pm 
The standard model of cold dark matter predicts the existence of thousands of small dark matter halos orbiting the Milky Way, and steep cusps in the central regions of dark matter halos. The lowluminosity, dark matter dominated dwarf galaxy population of the Milky Way provides an ideal laboratory for testing these predictions, and thus placing strong constraints on the nature of dark matter. I will show how present kinematic data from the galaxies tests solutions to the CDM ‘missing satellites problem,’ and how future astrometric data will reveal the presence of central density cores or cusps. I will also discuss how the kinematic data from these galaxies is able to provide strong constraints on the signal from cold dark matter particles annihilating into gammarays, Continue reading… Dark matter, smallscale structure, and dwarf galaxies – Louie Strigari 
String Gas Cosmology and Structure Formation – Robert Brandenberger  Tue. April 24th, 2007 11:30 am12:30 pm 
Understanding the very early universe is linked inextricably with understanding the resolution of cosmological singularities. I will discuss “string gas cosmology”, one of the approaches making use of string theory to obtain an improved picture of the early universe cosmology. In particular, I will show that string gas cosmology can lead to a new structure formation scenario in which string thermodynamic fluctuations generate a scaleinvariant spectrum of adiabatic fluctuations. Continue reading… String Gas Cosmology and Structure Formation – Robert Brandenberger 
The Origin of the Big Bang: the status of inflation after WMAP – Slava Mukhanov  Fri. April 20th, 2007 11:30 am12:30 pm 
I will discuss at a colloquium level the robust model independent predictions of inflation and compare these predictions with the results of the observations of the fluctuations of the cosmic mictrowave background radiation. Continue reading… The Origin of the Big Bang: the status of inflation after WMAP – Slava Mukhanov 
Prospects for a New Type of High Energy Physics Facility: a Muon Collider – Tom Roberts  Fri. April 13th, 2007 11:30 am12:30 pm 
In a few years, after Fermilab’s Tevatron turns off and initial LHC results are available, the High Energy Physics community will be at a crossroads: what type of facility to consider next? Neither proton nor electron machines hold much prospect for advancing the energy frontier beyond the LHC. But recent innovations in manipulating muon beams make it possible to imagine a third type of facility for HEP: a muon collider. An energy frontier muon collider could potentially fit on the Fermilab site, opening a completely new window into fundamental particle processes. In addition to presenting the basic concept, this talk will discuss the challenges inherent in creating, 
Ongoing Mysteries in Astrophysics – Don Driscoll  Wed. April 11th, 2007 4:00 pm5:00 pm 
We are at the brink of a Golden Age of Astrophysics with the promise of answers to many longoutstanding questions, including: What is the nature of Dark Matter? What source powers Active Galactic Nuclei? Where do GammaRay Bursts come from? Where do the highest energy Cosmic Rays come from? With an unprecedented number of experiments both active and coming online, there is a real hope that many of these questions may be answered in the near future. I have been lucky enough to be associated with some of the world’s most advanced astrophysical experiments. In this talk, I plan on detailing my life as an experimentalist and how my work has touched on some of these intriguing questions. Continue reading… Ongoing Mysteries in Astrophysics – Don Driscoll 
Probability in cosmology: from Bayes theorem to the anthropic principle – Roberto Trotta  Tue. March 27th, 2007 11:30 am12:30 pm 
TBA 
EBEX, a CMB Bmode polarization experiment – Tomotake Matsumura  Tue. March 20th, 2007 11:30 am12:30 pm 
I present a balloonborne cosmic microwave background (CMB) polarization experiment, E and B experiment(EBEX). EBEX is designed, i) to detect or set an upper limit (T/S less than 0.03) on the inflationary gravitywave background polarization anisotropy signal (primordial Bmode), ii) to measure the CMB polarization anisotropy signal induced by gravitational lensing (lensing Bmode), and iii) to measure galactic dust emission (120 GHz – 450 GHz) in order to monitor foreground contamination. In this talk, I present the EBEX science goals as well as an instrument overview. In particular among a number of subsystems in EBEX, I discuss a halfwave plate polarimeter using a superconducting magnetic bearing. Continue reading… EBEX, a CMB Bmode polarization experiment – Tomotake Matsumura 
Warped Passages: Unravelling the Mysteries of the Universe’s Hidden Dimensions  Tue. March 20th, 2007 5:30 pm6:30 pm 
Host: NOTE: The event is free, but registration is required, at www.case.edu/events/dls/register.html Continue reading… Warped Passages: Unravelling the Mysteries of the Universe’s Hidden Dimensions 
Voids of Dark Energy – Sourish Dutta  Tue. March 6th, 2007 11:30 am12:30 pm 
The presentday acceleration of the Universe is one of the greatest mysteries of modern cosmology. In the framework of general relativity, the expansion could be caused by either a “cosmological constant”, or a dynamical dark energy component (DDE). In this talk I will describe a novel theoretical approach to distinguishing between these two possibilities, namely, via the clustering properties of DDE. By following the dynamical evolution of matter perturbations in a cosmic mix of matter and DDE, we find the very interesting result that the DDE tends to form voids in the vicinity of gravitationally collapsing matter. I will discuss these voids in detail, 
Reconstructing dark energy using Maximum Entropy – Caroline Zunckel  Fri. March 2nd, 2007 12:30 pm1:30 pm 
Even in what has been termed an age of `precision cosmology’ certain anomalies on a range of astrophysical scales are observed and demand the existence of unseen types of matter or modifications to our current gravitational theory. In this article the issue of the nature of the mysterious `dark energy’ has been explored in a modelindependent way. A maximumentropy technique is developed and used to reconstruct the equation of state of dark energy within a bayesian framework. The motivation for the use of the MaxEnt technique is the lack of good data points in comparison to the number of parameters required for a sufficient characterization of dark energy. Continue reading… Reconstructing dark energy using Maximum Entropy – Caroline Zunckel 
Do quantum excitations of the inflaton decay? – Cristian ArmendarizPicon  Fri. February 16th, 2007 12:30 pm1:30 pm 
The properties of the primordial perturbations seeded during a stage of inflation are determined by the quantum state of the inflaton. This state is usually assumed to be the “vacuum”, since one expects excited states to decay into the state of lowest energy. In the talk I discuss whether this assumption holds in the presence of a shortdistance cutoff. I describe the calculation of transition probabilities between excited states and the vacuum, and discuss the implications of the results that I obtain. Continue reading… Do quantum excitations of the inflaton decay? – Cristian ArmendarizPicon 
Cosmic (super)strings: Gravitational wave bursts, stochastic background, and experimental constraints – Xavier Siemens  Tue. January 30th, 2007 11:30 am12:30 pm 
I discuss gravitational wave experimental signatures (bursts and stochastic background) of cosmic strings. I will show burst rates that are substantially lower (about a factor of 1000) than previous estimates suggest and explain the disagreement. Initial LIGO is unlikely to detect bursts from field theoretic cosmic strings, though it may detect cosmic superstring bursts. I also compare the stochastic background produced by a network of strings with a wide range of experiments and indirect bounds. If the latest cosmic string simulation results are correct then a large area of superstring parameter space is ruled out by pulsar timing observations. 
Quantum cosmology and the conditions at birth of the universe – Serge Winitzki  Tue. January 23rd, 2007 11:30 am12:30 pm 
Cosmology ultimately aims to explain the initial conditions at the beginning of time and the entire subsequent evolution of the universe. The “beginning of time” can be understood in the WheelerDeWitt approach to quantum gravity, where homogeneous universes are described by a Schroedinger equation with a potential barrier. Quantum tunneling through the barrier is interpreted as a spontaneous creation of a small (Plancksize) closed universe, which then enters the regime of cosmological inflation and reaches an extremely large size. After sufficient growth, the universe can be adequately described as a classical spacetime with quantum matter. The initial quantum state of matter in the created universe can be determined by solving the Schroedinger equation with appropriate boundary conditions. Continue reading… Quantum cosmology and the conditions at birth of the universe – Serge Winitzki 
The life and death of dark matter halos: predictions for neutralino annihilation  Tue. December 12th, 2006 11:30 am12:30 pm 
The concordance cosmological model predicts that structures in the Universe form via hierarchical merging, beginning with the smallest dark matter minihalos. The mass of the smallest halo is set by the initial thermal motion of dark matter particles. After merging into larger systems and subsequent dynamical evolution, most halos lose between 50% and 99% of their mass but an interesting fraction of dark matter remains in selfbound clumps at all mass scales. The smallest substructure has important implications for the detection of dark matter annihilation, predicted by SUSY models. Continue reading… The life and death of dark matter halos: predictions for neutralino annihilation 
Aethereal Gravity – Brendan Foster  Tue. December 5th, 2006 11:30 am12:30 pm 
Hints from quantum gravity suggest the existence of a preferred frame. One way to accommodate such a frame in general relativity without sacrificing general covariance is to couple the metric to a dynamical, timelike, unitnorm vector field–the “aether”. I will discuss observational constraints on a class of such theories, with a focus on postNewtonian effects and radiation from binary pulsar systems, and show that a subset remains viable. 
The Quintessence Potential: Need for Features and Tracking? – Martin Sahlen  Tue. November 28th, 2006 11:30 am12:30 pm 
We reconstruct the potential of a quintessence field from current observational data, including new supernova data, plus information from the cosmic microwave background and from baryon acoustic oscillations. We model the potential using Pade approximant expansions as well as Taylor series, and use observations to assess the viability of the tracker hypothesis. Present data provide some insights into the shape of a presumptive quintessence potential, but also strengthen the model selection preference for the cosmological constant over evolving models. They also show some signs, though inconclusive, of favouring tracker models over nontracker models under our assumptions. Continue reading… The Quintessence Potential: Need for Features and Tracking? – Martin Sahlen 
Exploring the Dark Energy Domain – Dragan Huterer  Tue. November 21st, 2006 11:30 am12:30 pm 
One of the great mysteries of modern cosmology is the origin and nature of dark energy – a smooth component that contributes about 70% of the total energy density in the universe and causes its accelerated expansion. Here I present results from a comprehensive study of a class of dark energy models, exploring their dynamical behavior using the method of flow equations and the Monte Carlo Markov Chain machinery that have previously been applied to inflationary models. I comment on the current and expected future constraints, insights into the dynamics of dark energy, figures of merit, and a classification of theoretical models. Continue reading… Exploring the Dark Energy Domain – Dragan Huterer 
Probing Dark Energy – Josh Frieman  Tue. November 14th, 2006 11:30 am12:30 pm 
TBA 
Black Hole Formation, Evaporation and the Information Loss Problem – Dejan Stojkovic  Tue. October 17th, 2006 11:30 am12:30 pm 
We use the full quantum treatment to study formation of a black hole as seen by an asymptotic observer. Using the Wheelerde Witt equation to describe a collapsing shell of matter (a spherical domain wall), we show that the black hole takes an infinite time to form in the quantum theory, just as in the classical treatment. Asymptotic observers will therefore see a compact object but never see effects associated with an event horizon. To explore what signals such an observer would see we study radiation of quantum fields in this background using two approaches: functional Schroedinger method and an adaptation of Hawking’s original calculation. 
Nuclear astrophysics underground – Heide Costantini  Tue. October 3rd, 2006 11:30 am12:30 pm 
Cross section measurements for quiescent stellar burning are hampered mainly by extremely low counting rate and cosmic background. Some of the main reactions of Hburning phase have been measured at the LUNA facility (Laboratory for Underground Nuclear Astrophysics) taking advantage of the very low background environment of the Underground Gran Sasso National Laboratory in Italy. The adopted experimental techniques will be presented together with the latest results on the 14N(p,g)15O reaction and the status of the ongoing 3He(4He,g)7Be experiment. Furthermore a brief overview of the ALNA (Accelerator Laboratory for Nuclear Astrophysics underground) project, as a part of the new future Underground DUSEL laboratory in the USA, Continue reading… Nuclear astrophysics underground – Heide Costantini 
Searching for double beta decay with the Enriched Xenon Observatory – Carter Hall  Tue. September 26th, 2006 11:30 am12:30 pm 
Neutrinoless double beta decay has recently become a top priority for the global experimental neutrino physics program. Double beta decay has the potential to resolve the scale of the neutrino mass spectrum, and is also the only practical tool we have for understanding the particle/anti particle nature of the neutrino. The Enriched Xenon Observatory (EXO) collaboration is developing sensitive searches for the double beta decay of Xenon136. Our first experiment, EXO200, will be the largest double beta decay experiment ever attempted by an orderofmagnitude, and is rapidly being constructed. We are also pursuing R and D to realize a system to tag the daughter barium nucleus of the decay using the techniques of singleion spectroscopy. Continue reading… Searching for double beta decay with the Enriched Xenon Observatory – Carter Hall 
Positron annihilations at the Galactic Center: Generating more questions than answers – Hasan Yuksel  Tue. September 26th, 2006 11:30 am12:30 pm 
The bulge of our Galaxy is illuminated by the 0.511 MeV gammaray line flux from annihilations of nonrelativistic positrons. The emission is strongly concentrated at the Galactic Center, in contrast to gammaray maps tracing nucleosynthesis (e.g., the 1.809 MeV line from decaying ^26Al) or cosmic ray processes (e.g., the 130 MeV continuum), which reveal a bright disk with a much less prominent central region. Central to resolving the origin of the positrons is the question of their injection energies, which range up to 100 MeV or even higher in recent astrophysical and exotic (requiring new particle physics) models. If positrons are generated at relativistic energies, 
Michelson Postdoctoral Prize Lecture – Nicole Bell  Mon. May 1st, 2006 11:30 am12:30 pm 
Astrophysical Neutrinos: Revealing Neutrino Properties at the Highest Energies Continue reading… Michelson Postdoctoral Prize Lecture – Nicole Bell 
Accelerated expansion from structure formation – Syksy Rasanen  Tue. April 4th, 2006 11:30 am12:30 pm 
I discuss the backreaction of inhomogeneities on the expansion of the universe. The average behaviour of an inhomogeneous spacetime is not given by the FriedmannRobertsonWalker equations. The new terms in the exact equations hold the possibility of explaining the observed acceleration without a cosmological constant or new physics. In particular, the coincidence problem may be solved by a connection with structure formation. Continue reading… Accelerated expansion from structure formation – Syksy Rasanen 
DEAP and CLEAN Detectors for LowEnergy Particle Astrophysics – Andrew Hime  Tue. March 7th, 2006 11:30 am12:30 pm 
The unique properties of scintillation light in liquid neon and liquid argon make possible conceptually simple, massive, and highly sensitive detectors of lowenergy solar neutrinos and cosmological dark matter. I will describe the program underway for the design and construction of two novel and complementary detectors dubbed DEAP (Dark matter Experiment with Argon and Pulse shape discrimination) and CLEAN (Cryogenic Low Energy Astrophysics with Neon). Continue reading… DEAP and CLEAN Detectors for LowEnergy Particle Astrophysics – Andrew Hime 
In Search of Particle Dark Matter – Dan Hooper  Tue. February 28th, 2006 11:30 am12:30 pm 
In recent years, we have learned a great deal about dark matter, but are still ignorant of its identity. The key to uncovering this mystery is likely to lie in some combination of direct and indirect detection techniques, as well as with collider experiments. In this talk, I will explore the ability of indirect detection experiments using antimatter, neutrinos and gammarays to detect particle dark matter. I will summarize the current observational situation and project the reach of these endeavors in the coming years. Continue reading… In Search of Particle Dark Matter – Dan Hooper 
Galaxy Clustering in the SDSS Redshift Survey – Idit Zehavi  Tue. February 21st, 2006 11:30 am12:30 pm 
The ongoing Sloan Digital Sky Survey (SDSS) is providing a wealth of information enabling extensive largescale structure studies. I will present measurements of galaxy clustering with the SDSS redshift survey, using a sample of about 200,000 galaxies, and concentrating on the twopoint correlation function. The SDSS is particularly suitable for investigating the dependence of clustering on galaxy properties, and we focus on the dependence on color and on luminosity. We interpret the measurements using contemporary models of galaxy clustering, which help to elucidate the features of the observed correlation functions and provide insights on galaxy formation and the relation of galaxies and dark matter. Continue reading… Galaxy Clustering in the SDSS Redshift Survey – Idit Zehavi 
Cosmogenic Radioisotopes in Low Background Experiments – The WARP Experiment at Gran Sasso – Cristiano Galbiati  Tue. January 24th, 2006 11:30 am12:30 pm 
I will discuss results from recent studies on production of radioisotopes by muoninduced showers in neutrino detectors located deep underground. Cosmogenic radioisotopes represent one of the most significant and important classes of background for experiments on solar neutrinos. I will show how a detailed understanding of the production mechanisms of the radioisotopes can help in opening new windows of observation for low energy solar neutrinos (in particular, pep neutrinos). I will also review the status and the plans for the WARP experiment at Gran Sasso. WARP is a twophase argon drift chamber designed for direct detection of WIMP Dark Matter. 
TeV gammarays and the largest masses and annihilation cross sections of neutralino dark matter – Stefano Profumo  Tue. November 15th, 2005 11:30 am12:30 pm 
Motivated by the interpretation of the recent results on the TeV gamma radiation from the Galactic center, including the new 2004 HESS data, as a byproduct of dark matter particles annihilations, we address the question of the largest possible neutralino masses and pair annihilation cross sections in supersymmetric models. Extending the parameter space of minimal models, such as the mSUGRA and the mAMSB scenarios, to general soft SUSY breaking Higgs masses gives access to the largest possible pair annihilation rates, corresponding to resonantly annihilating neutralinos with maximal gauginohiggsino mixing. Adopting a modelindependent approach, we provide analytical and numerical upper limits for the neutralino pair annihilation cross section. 
Chaotic Processes in Planet Migration and Orbital Evolution – Fred Adams  Tue. November 8th, 2005 11:30 am12:30 pm 
Nearly 150 extrasolar planets have been discovered to date, and their observed orbits display an unexpected diversity. This talk considers a collection of processes for planet migration and orbital evolution, including those operating on a range of time scales. In particular, we consider planetplanet scattering, the action of disk torques, scattering of solar systems with passing binary star systems, and the long term evolution of planetary systems. The result of this survey of processes provides a explanation for the orbital elements of observed planetary systems, places constraints on the birth aggregate of our solar system, and determines the fraction of binary star systems that allow for the long term stability of an Earthlike planet. Continue reading… Chaotic Processes in Planet Migration and Orbital Evolution – Fred Adams 
Prospects for Measuring nuN Coherent Scattering at a Spallation Source  Tue. October 18th, 2005 11:30 am12:30 pm 
Coherent neutral current neutrinonucleus elastic scattering has never been observed. Although the crosssection is very high, nuclear recoil energies are very small. However, detection of the process may be possible for the new generation of lowthreshold detectors. A promising prospect for the first detection of this process is an experiment at a high flux stoppedpion neutrino source such as the SNS. I will present some preliminary rate calculations and discuss the physics reach of such an experiment. Continue reading… Prospects for Measuring nuN Coherent Scattering at a Spallation Source 
On virialization with dark energy – Irit Maor  Tue. October 11th, 2005 11:30 am12:30 pm 
We review the inclusion of dark energy into the formalism of spherical collapse, and the virialization of a twocomponent system, made of matter and dark energy. We compare two approaches in the literature. The first assumes that only the matter component virializes, e.g. as in the case of a classic cosmological constant. The second approach allows the full system to virialize as a whole. We show that the two approaches give fundamentally different results for the final state of the system. This might be a differentiating signature between the classic cosmological constant which cannot virialize, and a dynamical dark energy mimicking a cosmological constant. Continue reading… On virialization with dark energy – Irit Maor 
Prospects for Measuring nuN Coherent Scattering at a Spallation Source – Kate Scholberg  Tue. October 11th, 2005 11:30 am12:30 pm 
Coherent neutral current neutrinonucleus elastic scattering has never been observed. Although the crosssection is very high, nuclear recoil energies are very small. However, detection of the process may be possible for the new generation of lowthreshold detectors. A promising prospect for the first detection of this process is an experiment at a high flux stoppedpion neutrino source such as the SNS. I will present some preliminary rate calculations and discuss the physics reach of such an experiment. 
Wormholes, Dark Energy, and the Null Energy Condition – Roman Buniy  Tue. October 4th, 2005 11:30 am12:30 pm 
We show that violation of the null energy condition implies instability in a broad class of models, including classical gauge theories with scalar and fermionic matter as well as any perfect fluid. When applied to the dark energy, our results imply that w = p / rho is unlikely to be less than 1. As another application, Lorentzian (traversable) wormholes and time machines with semiclassical spacetimes are unstable to small perturbations. Continue reading… Wormholes, Dark Energy, and the Null Energy Condition – Roman Buniy 
Can black hole events from cosmic rays be observed at the Auger Observatory? – Dejan Stojkovic  Tue. September 27th, 2005 11:30 am12:30 pm 
It has been argued that neutrinos originating from ultrahigh energy cosmic rays produce black holes deep in the atmosphere in models with TeVscale quantum gravity. Such black holes would initiate quasihorizontal showers of particles far above the standard model rate, so that the Auger Observatory would observe hundreds of black hole events. This would provide the first opportunity for experimental study of microscopic black holes. However, any phenomenologically viable model with a low scale of quantum gravity must explain how to preserve protons from rapid decay mediated by virtual black holes. We argue that unless this is accomplished by the gauging of baryon or lepton number, 
Quantum metric fluctuations in cosmological and black hole spacetimes – Albert Roura  Tue. September 20th, 2005 11:30 am12:30 pm 
It is expected that a number of quantum aspects of the gravitational field and its interaction with the remaining matter fields can be studied within a lowenergy effective field theory approach provided that the typical scales involved are much larger than the Planck length. This has been considered in some detail for weak gravitational fields, but physically interesting situations often involve strong fields. Some nonequilibrium field theory methods which are particularly useful to address gravitational back reaction problems, such as the closed time path (CTP) formalism, will be briefly reviewed. I will then explain how to extract information on metric fluctuations and discuss applications to black hole and cosmological spacetimes. 
What is the Cosmological Significance of a Discovery of Wimps at Colliders or in Direct Experiments? – Jacob Bourjaily  Tue. September 13th, 2005 11:30 am12:30 pm 
Although a discovery of wimps either at colliders or indirect experiments would have enormous implications for our understanding of particle physics, it would imply less than one would like about our understanding of the dark matter in the universe or in the galactic halo: it surely is possible that discovered particles account for only a little of the total dark matter. To establish the cosmological significance of a wimp discovery, their density must be determined. I will show that data from neither hadron colliders nor direct detection experiments alone can be sufficient to determine the local or relic density of discovered wimps, 
Boundary Localized Symmetry Breaking and Topological Defects – Matthew Martin  Fri. May 6th, 2005 11:30 am12:30 pm 
I discuss the structure of topological defects in the context of recent extra dimensional models where the symmetry breaking terms are localized. These defects develop structure in the extra dimension which differs from the case where symmetry breaking is not localized. This new structure can lead to corrections to the mass scale of the defects which is not captured by the effective theory obtained by integrating out the extra dimension. I also consider the Higgsless model of symmetry breaking and show that no finite energydefects appear in some situations where they might have been expected. Continue reading… Boundary Localized Symmetry Breaking and Topological Defects – Matthew Martin 
The Ages of the Oldest Stars – Brian Chaboyer  Tue. April 26th, 2005 11:30 am12:30 pm 
The ages of the oldest stars in the Milky Way yield a reliable lower limit to the age of the universe and provide important information on the early formation history of our Galaxy. I will provide an overview of the stellar age determination process, including a critical look at the uncertainties associated with determining the ages of stars. Evidence for a significant spread in ages among the old stars in the halo of the Milky Way will be presented and used to study the early formation history of our Galaxy. I will conclude by discussing the absolute age of the oldest stars and its implications for cosmology. Continue reading… The Ages of the Oldest Stars – Brian Chaboyer 
Gravity and Horizon Entropy – Ted Jacobson  Fri. April 8th, 2005 11:30 am12:30 pm 
I will argue that if (i) entanglement entropy density across any surface is a universal finite constant η, and (ii) local Lorentz symmetry holds, then the spacetime metric must satisfy the Einstein equation, with Newton’s constant equal to 1/(4 hbar η). I will then discuss the nature of black hole entropy in light of this result. Continue reading… Gravity and Horizon Entropy – Ted Jacobson 
Technique for WIMP dark matter detection using pulseshape discrimination in noble liquids – Mark Boulay  Tue. March 29th, 2005 11:30 am12:30 pm 
It has long been known that a large fraction of our universe is composed of nonluminous or dark matter. The effects of dark matter have been observed since the 1930’s by studying velocity dipersions in galaxy clusters, and several direct searches for particle dark matter are ongoing. In this seminar I will present studies for the design of novel detectors for particle dark matter using scintillation pulse shape discrimination in noble liquids. Design of a dualpurpose liquid neon detector (CLEAN) for dark matter and lowenergy solar neutrino interactions evaluated with Monte Carlo simulations will be discussed. The projected sensitivity for CLEAN is less than 1046 cm2 for the spinindependent WIMPnucleon crosssection, 
Indirect signals from Dark Matter – Francesc Ferrer  Fri. March 4th, 2005 11:30 am12:30 pm 
Abstract: The only evidence so far for the presence of Dark Matter in our Galaxy is through its gravitational interactions. Several experiments, however, have recently observed the emission of gammarays from the Galactic Center that could be caused by the annihilation of Dark Matter particles. Candidates with masses ranging from the MeV to the ZeV will be explored and constraints on their properties will be obtained by requiring that they account for the observed Galactic radiation. Continue reading… Indirect signals from Dark Matter – Francesc Ferrer 
A Geometric approach to Distinguish Between a New Source and Random Fluctuations: Applications to HighEnergy Physics – Ramani S. Pilla  Fri. February 25th, 2005 11:30 am12:30 pm 
One of the fundamental problems in the analysis of experimental data is determining the statistical significance of a putative signal. Such a problem can be cast in terms of classical “hypothesis testing”, where a null hypothesis describes the background and an alternative hypothesis characterizes the signal as a perturbation of the background. This testing problem is often addressed by a chi square goodnessoffit or a likelihood ratio test (LRT) statistic. In general, the former does not yield good power in detecting the signal and the latter has lacked an analytically tractable reference distribution required to calibrate a test statistic. Pilla and Loader have introduced a new test statistic based on “perturbation theory” 
Ultrahigh energy neutrinos – Mike Duvernois  Tue. February 22nd, 2005 11:30 am12:30 pm 
The search for GZK neutrinos, and its connection to the highestenergy cosmic rays will be discussed. In particular, we’ll look at the current generation of astrophysical and cosmological neutrino search experiments (Auger, Icecube, and ANITA) and the next generation of Terraton detectors for neutrino measurements. Continue reading… Ultrahigh energy neutrinos – Mike Duvernois 
CMB/LSS correlation as a probe of dark energy – Levon Pogosian  Tue. February 15th, 2005 11:30 am12:30 pm 
Recent detection of the Integrated SachsWolfe effect via crosscorrelation of the CMB with large scale structure provided another piece of evidence for the existence of Dark Energy. Although crosscorrelation measurements are limited by large statistical uncertainties, they probe physical processes that are only weakly constrained by the CMB spectra and the SNIa luminosity curves. I will show that the crosscorrelation data, combined with the CMB power spectra, can provide competitive constraints on certain properties of dark energy. Continue reading… CMB/LSS correlation as a probe of dark energy – Levon Pogosian 
Brane cosmology with an anisotropic bulk – Dani Steer  Fri. February 11th, 2005 11:30 am12:30 pm 
In the context of brane cosmology, a scenario where our universe is a 3+1dimensional surface (the “brane”) embedded in a fivedimensional spacetime (the “bulk”), we focus on geometries for which the brane is anisotropic though still homogeneous. The main question we address is the following: can an anisotropic brane be sourced by a perfect fluid? As opposed to standard 4D cosmology, we argue that this may only be possible for very specific perfect fluid sources. Continue reading… Brane cosmology with an anisotropic bulk – Dani Steer 
The future of dark energy measurements – Dragan Huterer  Tue. February 1st, 2005 11:30 am12:30 pm 
Evidence for the existence of some form of dark energy — a smooth component that causes the accelerated expansion of the universe and contributes about 70% of the total energy density — is by now very solid. However, despite thousands of published papers on the topic essentially no progress has been made in understanding its nature and the underlying physical mechanism. In this talk I describe the prospects of several methods to measure the macroscopic properties of dark energy within the next decade. In addition to type Ia supernovae, these include weak and strong gravitational lensing, number counts of clusters of galaxies, Continue reading… The future of dark energy measurements – Dragan Huterer 
Theoretical Constraints on the Dark Energy Equation of State – Mark Trodden  Fri. January 28th, 2005 11:30 am12:30 pm 
Modern cosmological observations indicate that the expansion of the universe is accelerating. This is typically described in terms of the equation of state parameter of a hypothetical new component of the cosmic energy budget, presumed to be driving the acceleration. Observations then provide bounds on this parameter. In this talk I will discuss theoretical limits on the values of this parameter. In the first part I will discuss the (dire) implications of inferring from the data that the equation of state parameter is less than 1. This may happen if cosmic acceleration is driven by an energy component that violates the energy conditions of general relativity. Continue reading… Theoretical Constraints on the Dark Energy Equation of State – Mark Trodden 
Observing the Cosmic Infrared Background with Frequency Selective Bolometers – Thushara Perera  Tue. November 30th, 2004 11:30 am12:30 pm 
TBA 
Bayesian Analysis of the WMAP Data – Ben Wandelt  Tue. November 16th, 2004 11:30 am12:30 pm 
The desire to solve the three cosmological conundra of dark matter, dark energy and initial conditions drives us to demand more from cosmological observations. We require methods that link observations to theory in a convenient and lossless way. I will discuss a Bayesian approach to the analysis of the cosmic microwave background that enables the statistically exact extraction of cosmological information from the CMB and present our results from applying this methodology to the first year of WMAP data. Continue reading… Bayesian Analysis of the WMAP Data – Ben Wandelt 
Inflation, strings and the CMB – Ana Achucarro  Tue. November 2nd, 2004 11:30 am12:30 pm 
In the last year there has been a sudden renewal of interest in cosmic (super)string networks. I will explain why and will discuss – in a nontechnical way – some new cosmological models coming from superstring/supergravity theory, and how to constrain these models by their cosmic string production after inflation. Continue reading… Inflation, strings and the CMB – Ana Achucarro 
Possible evidence for spatial fluctuations in dark energy – Christopher Gordon  Tue. October 26th, 2004 11:30 am12:30 pm 
The WMAP cosmic microwave background (CMB) first year data was anomalously smooth on the largest spatial scales. We have recently shown that spatial fluctuations in the dark energy, that is causing the expansion of the Universe to speed up, may partially cancel the fluctuations in the CMB on the largest scales. This would imply that the residual fluctuations that are observed on large scales would be due to the integrated Sachs Wolfe effect which is caused by the effect of large scale structure on the CMB at a redshift of about 1. We found that the current WMAP data provides a two sigma detection of the dark energy fluctuations. Continue reading… Possible evidence for spatial fluctuations in dark energy – Christopher Gordon 
Confronting Inflation with Observation – William Kinney  Tue. October 19th, 2004 11:30 am12:30 pm 
Inflationary cosmology is a compelling model for the early universe, but until recently it has not been subject to precise experimental test. In the last year, new observations have made it possible not only to test the general predictions of inflation, but also to distinguish among (and rule out) particular models of inflation. I will discuss the status of inflationary cosmology in light of the most recent observations, and summarize what we can expect over the next few years. Continue reading… Confronting Inflation with Observation – William Kinney 
Physics of the black holebrane interaction – Dejan Stojkovic  Tue. October 12th, 2004 11:30 am12:30 pm 
In models with extra dimensions that accommodate a TeVscale gravity, small black holes that can be described by classical solutions of Einstein’s equations can exist. We study interaction of such black holes with our world — a brane embedded in a higher dimensional space. In such a setup there exist a host of new phenomena that do not have analogs in usual 3+1dim models. We specially discuss experimental signature which may help us distinguish between the various extra dimensional scenarios. Continue reading… Physics of the black holebrane interaction – Dejan Stojkovic 
Racetrack Inflation – Jose BlancoPillado  Sat. October 9th, 2004 11:30 am12:30 pm 
Four dimensional effective actions of many of the currently studied extradimensional theories seem to contain massless scalar fields called moduli. Giving these fields a potential is crucial to make these theories compatible with observations. It is therefore natural to explore the possibility that before they settle down to the true minimum of their potentials these fields could be relevant for cosmology, in particular they could be the source of an inflationary expansion period of the universe. In this talk, I will review ealier attempts to follow these ideas and present a new model of topological modular inflation in the context of the recently develop flux compactifications within string theory. 
First Results from the CAPMAP Experiment – Phil Farese  Tue. September 28th, 2004 11:30 am12:30 pm 
CAPMAP is a dedicated 40 and 90 GHz CMB polarization experiment. Observing with a 7m radio telescope from Holmdale, NJ CAPMAP intends to measure the primary polarization of the CMB at small (60′4′) angular scale where the signal is maximum. I will discuss the design of the experiment, results from its first season, and the full observing campaign intended to culminate this academic year. Continue reading… First Results from the CAPMAP Experiment – Phil Farese 
AffleckDine Leptogenesis Induced by the Flaton of Thermal Inflation – Wanil Park  Tue. September 14th, 2004 11:30 am12:30 pm 
We propose a simple model in which MSSM plus neutrino mass term, (LH_u)^2 is supplemented by a minimal flaton sector to drive the thermal inflation, and make two crucial assumptions: the flaton vacuum expectation value generates the muterm of the MSSM and m_L^2 +m_{H_u}^2<0. We show that our model leads to thermal inflation followed by Affleck Dine leptogenesis along the LH_u flat direction. Continue reading… AffleckDine Leptogenesis Induced by the Flaton of Thermal Inflation – Wanil Park 
Results from the Sudbury Neutrino Observatory Salt Phase and the Future of the SNO Detector – Darren Grant  Tue. September 7th, 2004 11:30 am12:30 pm 
The Sudbury Neutrino Observatory is a heavy water Cherenkov detector designed to be sensitive to the total flux of Boron 8 solar neutrinos. The addition of NaCl to the detector enhances the Neutral Current signal, and therefore improves the measurement of the total solar flux. The open salt dataset, consisting of approximately 254 days of livetime, has been analysed using analytic probabiltiy density functions in an extented maximum likelihood calculation. The final Boron8 model constrained result of this analysis give a Charged Current to Neutral Current ratio of 0.344 +/ 0.021(stat) +0.024/0.035(syst). This talk will present an overview of this independent analysis of the SNO data. 
BPS bounds of F versus Dterm strings and their cosmological implications – Filipe Freire  Tue. August 24th, 2004 11:30 am12:30 pm 
Supersymmetry seems to facilitate the bringing together of inflationary models with particle physics. We give an overview of inflation models in supersymmetric theories. These models often lead to the production of cosmic strings after inflation. The cosmological implication of the production of these strings strongly depends on whether they saturate the socalled BPS condition. We study a particular model where we show that the BPS condition is preserved at the quantum level. Do not be discouraged by some technical language used in the abstract, all that will hopefully be made clear in more physically transparent terms during the seminar. 
Solar Evidence for Neutrino Transition Magnetic Moments and Sterile Neutrinos – David Caldwell  Fri. July 9th, 2004 1:30 pm2:30 pm 
While KamLAND apparently rules out ResonantSpinFlavorPrecession (RSFP) as an explanation of the solar neutrino deficit, the solar neutrino fluxes in the Cl and Ga experiments appear to vary with solar rotation. Added to this evidence, summarized here, a power spectrum analysis of the SuperKamiokande (SK) data reveals significant variation in the flux matching a dominant rotation rate observed in the solar magnetic field in the same time period. Four frequency peaks, all related to this rotation rate, can be explained quantitatively. A recent SK paper reported no time variation of the flux, but showed the same peaks with statistically insignificant sensitivity, 
The Atacama Cosmology Telescope Project – Arthur Kosowsky  Fri. June 11th, 2004 2:00 pm3:00 pm 
The Atacama Cosmology Telescope (ACT) is a customdesigned 6meter microwave telescope employing superconducting bolometer array detectors, which will be located in the Atacama Desert of the Chilean Andes in 2006. It will provide maps of the cosmic microwave background at arcminute resolution and microKelvin sensitivity over a hundred square degrees of sky. I will review the scientific motivation for building this instrument, explain some of the technologies which are necessary, and discuss plans for complementary astronomical observations. We aim to compile a catalog of 1000 galaxy clusters and redshifts, selected by their distortions of the microwave background. ACT will provide insights into a wide range of topics including the primordial spectrum of density fluctuations, Continue reading… The Atacama Cosmology Telescope Project – Arthur Kosowsky 
Terrestrial MiniBang: Transmuting a Color Glass Condensate into Quark Gluon Plasma at RHIC – Raju Venugopalan  Tue. April 20th, 2004 11:30 am12:30 pm 
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is currently completing run 5. We discuss some of the remarkable and unexpected results emerging from experiments on GoldGold collisions at the ultrarelativistic energies of RHIC as well as results from DeuteronGold and ProtonProton collisions at the same energies. Together, they provide a compelling (if not completely understood) picture of a) the quarkgluon matter produced at RHIC and, unexpectedly,b) a description of the matter constituting the wavefunction of a high energy hadron as a Color Glass Condensate. 
Octonions and Fermions – Corinne A. Manogue  Wed. April 14th, 2004 2:30 pm3:30 pm 
Ten dimensional supersymmetric theories of physics such as superstring theory are at heart just higher dimensional generalizations of the Dirac equation. An enduring problem with these theories is how to reduce the spacetime dimension to the four we live in. I will describe a mechanism for reducing 10 spacetime dimensions to 4 without compactification, based on a generalization of the complex numbers known as the octonions. Applying this mechanism to the 10dimensional Dirac equation leads to a treatment of both massive and massless particles on an equal footing. The resulting unified description has the correct particle spectrum to describe precisely 3 generations of leptons, Continue reading… Octonions and Fermions – Corinne A. Manogue 
Exoplanets, The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way – Charley Lineweaver  Wed. April 7th, 2004 2:30 pm3:30 pm 
As we learn more about the Milky Way Galaxy, extrasolar planets and the evolution of life on Earth, qualitative discussions of the prerequisites for life in a Galactic context can become more quantitative. We model the evolution of the Milky Way Galaxy to trace the distribution in space and time of four prerequisites for complex life: the presence of a host star, enough heavy elements to form terrestrial planets, sufficient time for biological evolution and an environment free of lifeextinguishing supernovae. We identify the Galactic habitable zone (GHZ) as an annular region between 7 and 9 kiloparsecs from the Galactic center that widens with time and is composed of stars that formed between 8 and 4 billion years ago. 
Cosmological magnetic fields vs. CMB – Tina Kahniashvili  Tue. February 24th, 2004 11:30 am12:30 pm 
The cosmological perturbations induced by primordial magnetic fields and its influence on cosmic microwave background (CMB) radiation will be discussed. In particular, CMB temperature anisotropies, polarization, and temperaturepolarization cross correlations, as well as Faraday rotation effect will be presented. The possible observational CMB tests to detect primordial magnetic fields will be discussed. Continue reading… Cosmological magnetic fields vs. CMB – Tina Kahniashvili 
Looking for Dark Energy with the SDSS and WMAP – Ryan Scranton  Tue. February 10th, 2004 11:30 am12:30 pm 
We present measurements of the angular crosscorrelation between luminous red galaxies from the Sloan Digital Sky Survey and the cosmic microwave background temperature maps from the Wilkinson Microwave Anisotropy Probe. Looking at a number of redshift slices and CMB bands, we find a statistically significant achromatic positive correlation between these data sets, consistent with the expected signal from the late Integrated SachsWolfe effect. We do not detect any anticorrelation on small angular scales as would be produced by a large SunyaevZel’dovich effect, although we do see evidence for some SZ effect in our highest redshift samples. Assuming the flat universe found by the WMAP survey, Continue reading… Looking for Dark Energy with the SDSS and WMAP – Ryan Scranton 
The Pierre Auger Observatory: A New Era Dawning in for Cosmic Rays – Corbin Covault  Tue. February 3rd, 2004 11:30 am12:30 pm 
We are apparently at a unique moment in the history of cosmic ray physics. The origin of UltraHigh Energy Cosmic Rays (UCECR) has persisted as a profound astrophysical mystery for decades. But recently, the two premiere experiments for the detection of UHECR (AGASA and HiRes Fly’s Eye) have reported their best results — the culmination of many years of observations and analysis. These results might have been expected to provide key insight into to a new determination of the origin of cosmic rays, except for one fact: the two experiments, AGASA and HiRes have presented results that apparently contradict each other in several ways. 
Cosmological Observatiions of the QCD and Electroweak Early Universe Phase Transitions – Leonard Kisslinger  Tue. January 27th, 2004 11:30 am12:30 pm 
TransitionsMy coworkers and I have shown that if the QCD phase transition, at about T=150 MeV, is first order, the bubble nucleation and collisions would produce magnetic effects, which would give polarization correlations of the Cosmic Microwave Background Radiation distinct from those predicted by other theoretical cosmological studies. The Electroweak phase transition at T=Higgs Mass is first order in the minimal supersymmetric model, with the mass of the stop (partner of the top quark) being of the order of the Higgs. Applying this theory we are studying magnetic fields generated during the EW phase transition as seeds for galactic magnetic fields. 