Shopping cart


Bilayer Quantum Hall Effect – Bahman Roostaei

Date: Mon. February 4th, 2008, 12:30 pm-1:30 pm
Location: Rockefeller 221

In a closely spaced double quantum well (DQW), electrons are thought to form an interlayer coherent state when a perpendicular magnetic field is applied such that the total Landau level filling factor one. The low energy topological excitations of the electron gas in these structures includes charged pseudo-spin vortices and anti-vortices. Using the Hartree-Fock approximation, we show that there are new excited states with interwoven spin and pseudo-spin and that their presence in the system can explain new experimental results. The excitations of DQW’s (called merons) also have important effects on transport in these systems. These objects carry charge, vorticity, and electric dipole moment. Disorder is likely to unbind them and allow them to diffuse through the system independently. Due to their different dipole moments, the various types of merons may then in principle be distinguished in transport activation energies by an interlayer bias potential. We explore the dynamics of merons using Chern-Simon theory to numerically estimate their energies.

Scroll To Top