Doctoral Program Mission

The Department of Physics at Case Western Reserve University seeks to broaden and deepen the graduate student’s understanding of physics, and to promote the progress of physics as a research discipline. Neither of these efforts can be completely separated from the other. A student’s understanding of physics is necessarily reflected in research, as research will help to deepen the student’s understanding of physics. Thus, the relative emphasis of a student’s education gradually shifts during graduate study from early concentration on formal course work to original research that is necessary for a Ph.D. dissertation. Throughout the student’s graduate career, they will interact with faculty and students from all sub-disciplines within the department, as well with faculty from other departments. Additionally, teaching is an important component in a student’s education, particularly in their ability to transmit information clearly. Early in their graduate careers nearly all students serve as teaching assistants, under the supervision of the director of graduate studies and the undergraduate laboratory director.

Ph.D. research at CWRU fall into three main foci: biophysics/soft materials, nanoscale and quantum materials, and cosmology and astrophysics.

Biophysics research in our department spans from the molecular to the medical scales, including how the mechanics of biomolecules and cells allow for movement and function, how evolution can drive antibiotic resistance, and how new methods can image, diagnose, and treat disease. Our biophysics research benefits from the vibrant biomedical research community in Cleveland.

Nanoscale and quantum materials is our condensed matter physics program that includes nanoscopic physics, ultrafast spectroscopy, optical materials and optoelectronic devices, and surface science. These technologically critical fields are rich in optical and electronic innovations, including semiconductor technologies, displays, and telecommunications devices.

The primary thrust of the particle/astrophysics research areas includes both experimental and theoretical efforts to understand the evolution and contents of the universe. These investigations require our faculty and students to develop and apply new measurement techniques, sensor technologies, and detailed computer simulations and analyses. As such, our students receive broad technical training that positions them to pursue a diverse range of careers from basic science to the private sector.

Admission Standards

For admission to the Ph.D. program, a bachelors degree in physics, mathematics, or a related field is required. The student should have taken standard upper level undergraduate subjects such as quantum mechanics, electricity and magnetism, statistical mechanics and thermodynamics, and classical mechanics. A grade point average of 3.0/4.0 normally serves as the floor for admissions, although higher grades are almost always required.

Notice: Important:  CWRU Physics neither requires nor recommends that applicants submit GRE scores. This applies to both the general GRE and the physics subject test GRE.    We do not use any GRE scores to evaluate applicants.  Please ignore any material in any CWRU application form that may ask for and/or suggest that GRE scores are required.

 

The Manner in Which the Program Addresses the Needs of the State, Region, and Nation

The department’s research covers a number of areas relevant to the state, region, and nation, including research related to energy conservation and alternative energy sources, a major focus of the state and nation; soft condensed matter such as polymers and liquid crystals, which ties in with the polymer and liquid crystal industry in northeast Ohio; semiconductor and nanoscopic systems, important for the U.S. technological infrastructure; and medical physics, which couples with the large medical infrastructure in Cleveland, Ohio, and the U.S., as well as with the medical imaging industry, which has a large presence in the area. Our program in particle/astrophysics has impact both locally and around the world, and is a motor that drives K-12 interest in science. The department also is heavily involved in outreach, including regular appearances by our faculty on NPR’s Science Friday, consulting as technical experts for area companies and law firms, and direct educational outreach via activities at the Great Lakes Science Center and area high schools and middle schools — presenting popular lectures, judging science fairs, and supervising high school research projects in our own laboratories.

Placement Objectives for Graduates

Graduating students generally have one or more job offers before graduation. Typically about half of our graduates take postdoctoral fellowships on graduation, with the remaining students going into industrial or national laboratory positions. Approximately five years out, the employment distribution is approximately one-third each in tenure track faculty positions, industrial positions, and national laboratory positions.

Review Information

Date of last review: Spring, 2008

Date of next scheduled review: Spring, 2016

Date these programs were revised: Spring, 2008

Advising

Upon entry to graduate school the Master’s and Ph.D. student’s academic advisor will be the department’s Director of Graduate Studies. Eventually, each successful student will acquire a research advisor and dissertation committee. At that time the responsibility of the Director of Graduate Studies will greatly diminish, but not vanish entirely. It will remain the Graduate Studies Director’s responsibility to assist the research advisor in academic matters. The Director of Graduate Studies, as well as the research advisor, will countersign the student’s course program. It is the responsibility of the Director of Graduate Studies to follow the career of the student and see that all requirements for the degree are fulfilled.

The Director of the Physics Entrepreneurship Program will be the academic advisor for the student’s in the Entrepreneurship Track of the Master’s program. Each successful student will also acquire a research advisor and thesis committee, which will meet with the student at least once per semester. It is the responsibility of the Director of the Physics Entrepreneurship Program to follow the career of the students in this track and see that all requirements for the degree are fulfilled.

Requirements for Graduation

Requirements for the Ph.D. degree include coursework, the Ph.D. qualifying examination, a topical oral examination, and submission and defense of a written thesis. These requirements may be met by supervised research, by lecture courses, by reading courses, or a combination.

The PhD degrees are awarded by the CWRU School of Graduate Studies (SGS). All candidates must meet the SGS requirements for graduation as well as the requirements established by the Physics Department. More information can be found on the SGS website School of Graduate Studies (SGS) Homepage

Required Courses for Ph.D. Degree

With the help of a faculty advisor, students choose a curriculum of course work from among a large array of offerings in physics and related science and engineering departments.

A total of 54 credit hours are required for graduation of which at least 36 credit hours must be course work and at least 18 credit hours must be research. (Students entering the PhD program with a masters degree are only required to take 18 credit hours of course work.)

The 18 credit hours of research must be taken at PHYS 701. The course PHYS 601 may not be used to meet the research credit hour requirement. [Note: Once a student enrolls in their first credit hour of PHYS 701, they must continue to register for a least one credit hour of PHYS 701 every semester after that.]

The total of 36 credit hours (18 credit hours for students entering with a master degree) of course work (not including PHYS 701) must include

  • At least 24 credit hours of courses with a letter grade. (18 credit hours for students entering with a master degree.)
  • Not more that 12 credit hours of PHYS 601. (Not more that 6 credit hours for students entering with a master degree.)
  • Graduate Physics Laboratory (PHYS 472) or an approved waiver.
  • Three 400 or 500 level lecture courses.
    • The introductory courses (PHYS 413, PHYS 414, PHYS 423, PHYS 481, PHYS 472, and PHYS 482) cannot be used to satisfy this requirement.
    • At least one of the three courses must be in an area that is clearly not directly related to the PhD candidate’s primary dissertation research. The choice must be approved by the Graduate Studies Committee.
  • Courses in other departments may be substituted by petition to the director of graduate studies.
  • With the approval of the Director of Graduate Studies, PHYS 539, Special Topics Seminar, may be used to fulfill a course requirement.
  • Every semester Students must enroll in the zero credit hour colloquium course PHYS 666, Frontiers in Physics.

The classroom lecture courses will be augmented by official reading courses, which will have specified syllabi (published in the catalogue and monitored by the Graduate Committee), graded homework, and final examinations. Courses in special topics, as well as individualized study, can be arranged by mutual consent when the demand is sufficient.

Graduate Physics Laboratory Requirement: PHYS 472

Student with no significant prior laboratory experience must take PHYS 472: Graduate Physics Laboratory (3 Credit Hours). Students may apply for a waiver from the Grad Lab requirement if they can document prior laboratory experience. Waivers require approval of the Graduate Studies Committee after review by the Graduate Laboratories Committee.

Typical Courses for First Year Students

First-year students are strongly encouraged to enroll in the following courses designed to prepare the student for the Qualifying Exam. Students who do not wish to take these courses should first discuss their plans with their advisor.

Fall Semester:

  • PHYS 413. Classical Mechanics (3)
  • PHYS 423. Classical Electromagnetism (3)
  • PHYS 481. Quantum Mechanics I (3)

Spring Semester:

  • PHYS 414. Foundations of Statistical Mechanics (3)
  • PHYS 482. Quantum Mechanics II (3)
  • PHYS 472. Graduate Physics Laboratory (3)

Colloquia and Seminars: PHYS 666

In addition to course work and individualized direction in research, the Physics Department provides a third medium of teaching, one which is shared by students and faculty alike.

Colloquia are talks of a general nature, given at a level that all graduate students in all areas of physics should be able to follow. They are usually held on Thursdays. Notices (and whenever possible brief introductions to the subject) will be distributed well in advance of each colloquium. Graduate students are urged and expected to attend all of these colloquia. (All graduate students are required to register each semester for the zero credit-hour course Frontiers in Physics, PHYS 666, which consists of attendance at colloquia).

Seminars tend to deal more narrowly with specific topics, and often require some expertise in the field. Some groups hold weekly luncheon seminars; others meet whenever a speaker is available. Advanced students are expected not only to attend, but to participate in the seminars in their fields. Students who have not yet chosen a field of research may find the seminars a valuable means of sampling the types of research available. Students in the Entrepreneurship Track are expected to attend all of that Program’s seminars, and are encouraged to attend other relevant seminars.

Special Topics Seminar: PHYS 539

The Special Topics Seminar (from 1 to 3 credit hours) are courses for individual or small group instruction on topics of interest to the department. Topics include, but are not limited to, particle physics, astrophysics, optics, condensed matter physics, biophysics, imaging. Several such courses may run concurrently.

The offering of a PHYS 539 course requires the agreement of a faculty member to instruct the course. A syllabus with the course title, outline of the study plan, and rubric used for grading, must be approved by the Director of Graduate Studies.

Additional Courses for Cultural Purposes

The University permits graduate students to enroll in up to eight fellowship courses that are not counted toward the degree requirements for no additional charge. These may include, e.g., courses in foreign language, history, philosophy, business and management, music, engineering, etc. These courses will be graded, and a grade will appear on the student’s transcript.

Transfer Credit

Students requesting transfer credit should contact the SGS and Director of the Physics Graduate Program . General guidelines include:

  • Students who wish to receive credit for courses taken outside the University after they are enrolled at CWRU must petition for approval before taking the classes.
  • All transfer of credit requires approval from the student’s advisor, the departmental chair or graduate committee, the department for which credit is being granted, and the School of Graduate Studies.
  • Transfer credit does not count toward the required amount of graded coursework for graduation purposes.

Ph.D. Qualifying Examination and Master’s Comprehensive Examination

The Ph.D. qualifying examination is based on advanced undergraduate material and that covered in the introductory courses: Quantum Mechanics I & II; Classical Electromagnetism; Classical Mechanics; and Foundations of Statistical Mechanics. Additionally, written material from the graduate laboratory course and undergraduate courses (such as relativity) may be incorporated into the qualifying exam. A normally prepared student will be expected to take the qualifying examination in May at the end of the first year of graduate study.

Students who pass any section of the qualifying exam are not required to take those sections again. The sections of the qualifying exam which were not passed must be retaken.

Students who fail the first time will speak with the chair of the qualifying committee and Director of Graduate Studies to ascertain if there is a disconnect between knowledge and performance on the exam. They will discuss with the student how best to maximize the chance of passing on the student’s second attempt, generally in mid to late August. For students not passing the second time, the chair of the qualifying committee and Director of Graduate Studies will discuss the student’s future plans, or for the unusual possibility of a third exam.

Admission to Ph.D. Candidacy

A student will be admitted to Ph.D. candidacy upon passing the qualifying exam and upon a vote of the faculty to determine whether the student is making satisfactory academic progress.

Topical Oral Exam

Within one year of formal association with a research advisor, but no later than the end of the fifth semester after a student matriculates, each student will have an oral examination of her/his research progress with the dissertation committee. The examination will consist of a presentation by the student relating to literature in her/his thesis topic, a proposed direction for work, and a progress report.

Passing this examination is a requirement for the Ph.D. degree. If the student has not passed the exam by the deadline, he or she will not be permitted to register in the following term. If the time deadline cannot be met because of extenuating circumstances, the student may petition the graduate committee for an extension.

Ph.D. Research and Dissertation

A Ph.D. degree implies, in addition to the course and qualifier requirements, the performance of a piece of original research and its presentation as a doctoral dissertation. The research requirement for the Ph.D. is at the heart of the doctoral program. The final requirement for the Ph.D. degree is the written doctoral dissertation and oral defense.

Entering students should interest themselves in the available research possibilities in this department at an early state of their careers. They should be thinking about the area of interest, the kind of problem they would like to tackle, and the faculty member under whose direction they would like to work. As soon as they have passed the qualifier, they should devote themselves more and more to research.

By January or February of the first year the student should begin to speak with faculty members about their research, and ultimately find a faculty member who will sponsor and supervise the student’s work. The relationship between a student and research advisor is a very close one. It is in the course of this relationship that students develop their skills in the actual doing of physics. Students should give much thought to their choice of research area and research advisor. Once a student has made this commitment, it takes the highest priority. Students must understand that they are unlikely to bring their thesis research to a successful conclusion without a total commitment on their part. Our policy on financial support of graduate students reflects the importance of such a commitment. Renewal of a student’s support will be contingent upon evidence of progress toward a degree.

Five Year Deadline

The SGS requires that the PhD degree must be completed within five consecutive calendar years from the semester of the first credited 701 registration, including any leaves of absence. Any graduate student who fails to complete the requirements within the five-year limit for their degree program will be subject to separation from further study unless granted an extension by the School of Graduate Studies with the recommendation of their program. An extension may be granted if the student and their advisor work out a plan of action for degree completion within a specified time frame which must be endorsed by the department chair or graduate program director.

Policy on Working outside the Department

The teaching and research assistantships represent a rich and exciting experience and a total time commitment on the part of both the graduate student and his or her advisor. It is generally not advisable for a student to accept other employment or non-family responsibilities, inside or outside of the department or university. If a student nevertheless desires an additional position, written approval must first be obtained from the student’s advisor, and a petition then made to the Graduate Committee. Prior approval of the committee is required in order to avoid a possible reduction or termination in assistantship financial support.

A variety of special circumstances may arise in the case of students in the Entrepreneurship Track. Oversight will be provided by the Physics Entrepreneurship Committee, and approval of the Director of the Physics Entrepreneurship Program Director is required.