Magnetic nanoparticles are the focus of much current research with uses ranging from data storage in hard drives to targeted drug delivery in biomedical devices to smart fluids in automotive braking. These applications all depend critically on the intrinsic properties of the nanoparticles and the manner in which they interact; unfortunately, many traditional methods to investigate magnetic materials either average out the variations or provide information on only isolated particles in environments much different than in applications. To address these issues, my students and I have been working with a variety of collaborators on two different types of experiments with magnetic nanoparticles: one involving a technique known as polarized small angle neutron scattering to study the magnetic ordering of the particles and the second involving a variation of a fluid flow magnetic field fractionation approach to study the clustering. I will describe our progress so far, the unusual magnetic structures we have observed, and our plans for the future.