Early speculation that an electron gas in two dimensions is always an insulator was upset when experiments in relatively high mobility systems showed signs of metallic behavior. Systematic experiments forced us to re-examine the interplay between electron-electron interactions and disorder. I will show that a disordered Fermi-liquid model can comprehensively describe the observed transport properties of the 2DMIT. In particular, it will be shown that the MIT corresponds to a quantum critical point (QCP), whose existence was recently uncovered theoretically. Predictions for the thermodynamic properties in the vicinity of the QCP of the 2DMIT will be discussed. New experimental evidence will be presented in support of this scenario.