Shopping cart


Past Events

Event Date Summary
Amy Connolly (The Ohio State University) Tue. May 8th, 2018
11:30 am-12:30 pm

High Energy Neutrino Astronomy through Radio Detection 

Multimessenger astronomy has entered an exciting new era with the recent discovery of both gravitational waves and cosmic neutrinos.  I will focus on neutrinos as particles that can uniquely probe cosmic distances at the highest energies.  While optical Cerenkov radiation has been used for decades in neutrino experiments, the radio Cerenkov technique has emerged in the last 15 years as the most promising for a long-term program to push the neutrino frontier by over a factor of 1000 in energy.   I will give an overview of the current status and future of the radio neutrino program,

Continue reading… Amy Connolly (The Ohio State University)

Stuart Raby (Ohio State University) Tue. May 1st, 2018
11:30 am-12:30 am

Fitting amu and B physics anomalies with a Z’ and a Vector-like 4th family in the Standard Model

The Standard Model is very successful.  Nevertheless, there are some, perhaps significant, discrepancies with data.

A particularly interesting set of discrepancies hints at new physics related to muons. I will review the data and recent

NP models trying to fit the data.  Then I will discuss a very simple model which is motivated by heterotic string constructions.

Continue reading… Stuart Raby (Ohio State University)

Tyce DeYoung (Michigan State University) Tue. April 24th, 2018
11:30 am-12:30 am

First light at the IceCube Neutrino Observatory
The IceCube Neutrino Observatory, the world’s largest neutrino detector, monitors a cubic kilometer of glacial ice below the South Pole Station to search for very high energy neutrinos from the astrophysical accelerators of cosmic rays.  Since its commissioning in 2011, IceCube has discovered a flux of TeV-PeV scale astrophysical neutrinos, at a level with significant implications for our understanding of the dynamics of the non-thermal universe.  The sources of this flux have remained elusive, however.  In the last six months, hints to the identity of at least some of the sources may have begun to emerge,

Continue reading… Tyce DeYoung (Michigan State University)

Camille Avestruz (Kavli Institute for Cosmological Physics, University of Chicago) Tue. April 17th, 2018
11:30 am-1:30 pm

Computationally Probing Large Structures
We can constrain cosmological parameters by measuring patterns in the large scale structure of our universe, which are governed by the competition between gravitational collapse and the accelerated expansion of our universe.  The most massive collapsed structures are clusters of galaxies, comprised of hundreds to thousands of galaxies.  For galaxy clusters, the telltale cosmological pattern is simply their number count as a function of mass and time.  In this talk, I will discuss the challenges in using galaxy clusters as a probe for cosmology.  We address these challenges through computational methods that explore galaxy formation processes such as energy feedback from active galactic nuclei,

Continue reading… Camille Avestruz (Kavli Institute for Cosmological Physics, University of Chicago)

Hayden Lee (Harvard University) Tue. April 3rd, 2018
11:30 am-12:30 am

Collider Physics for Inflation
Cosmological correlation functions encode the spectrum of particles during inflation, in analogy to scattering amplitudes in colliders. Particles with masses comparable to the Hubble scale lead to distinctive signatures on non-Gaussianities that reflect their masses and spins. In addition, there exists a special class of partially massless particles that have no flat space analog, but could have existed during inflation. I will describe their key spectroscopic features in the soft limits of correlation functions, and discuss scenarios in which they lead to observable non-Gaussianity.

Continue reading… Hayden Lee (Harvard University)

Segev BenZvi (University of Rochester) Tue. March 27th, 2018
11:30 am-12:30 am

The Latest Results from the HAWC Very High-Energy Gamma-ray Survey
The High Altitude Water Cherenkov (HAWC) observatory, located in central
Mexico, is conducting a wide-angle survey of TeV gamma rays and cosmic
rays from two-thirds of the sky. TeV gamma rays are the highest energy
photons ever observed and provide a unique window into the non-thermal
universe. These very high energy photons allow HAWC to conduct a broad
science program, ranging from studies of particle acceleration in the
Milky Way to searches for new physics beyond the Standard Model. In this

Continue reading… Segev BenZvi (University of Rochester)

Cliff Cheung (Caltech) Tue. March 20th, 2018
11:30 am-12:30 pm

Unification from Scattering Amplitudes
The modern S-matrix program offers an elegant approach to bootstrapping quantum field theories without the aid of an action.  While most progress has centered on gravity and gauge theory, similar ideas apply to effective field theories (EFTs).  Sans reference to symmetry or symmetry breaking, we show how certain EFTs can be derived directly from the properties of the tree-level S-matrix, carving out a theory space of consistent EFTs from first principles.  Furthermore, we argue that the S-matrix encodes a hidden unification of gravity, gauge theory, and EFTs.  In particular, starting from the tree-level S-matrix of the mother of all theories,

Continue reading… Cliff Cheung (Caltech)

John Beacom (The Ohio State University) Tue. March 6th, 2018
11:30 am-12:30 pm

A New Era for Solar Neutrinos
Abstract: Studies of solar neutrinos have been tremendously important, revealing the nature of the Sun’s power source and that its neutrino flux is strongly affected by flavor mixing.  Nowadays, one gets the impression that this field is over.  However, this is not due to a lack of interesting questions; it is due to a lack of experimental progress.  I show how this can be solved, opening opportunities for discoveries in particle physics and astrophysics, simultaneously.

Continue reading… John Beacom (The Ohio State University)

Lindley Winslow (MIT) Wed. February 28th, 2018
1:30 pm-2:00 pm

First Results from CUORE: Majorana Neutrinos and the Search for Neutrinoless Double-Beta Decay
The neutrino is unique among the Standard Model particles. It is the only
fundamental fermion that could be its own antiparticle, a Majorana particle. A
Majorana neutrino would acquire mass in a fundamentally different way than the
other particles and this would have profound consequences to particle physics and
cosmology. The only feasible experiments to determine the Majorana nature of the
neutrino are searches for the rare nuclear process neutrinoless double-beta decay.
CUORE uses tellurium dioxide crystals cooled to 10 mK to search for this rare

Continue reading… Lindley Winslow (MIT)

Richard Ruiz (IPPP-Durham, UK) Tue. February 20th, 2018
11:30 am-12:30 am

Left-Right Symmetry: At the Edges of Phase Space and Beyond

The Left-Right Symmetric model (LRSM) remains one of the best motivated completions of the Standard Model of Particle Physics. Thus far, however, data from the CERN Large Hadron Collider (LHC) tell us that new particles, if they are still accessible, must be very heavy and/or very weakly coupled. Interestingly, these regions of parameter space correspond to collider signatures that are qualitatively and quantitatively different from those developed in pre-LHC times. We present several new LRSM collider signatures for these parameter spaces and show a greatly expanded discovery potential at the 13 TeV LHC and hypothetical future 100 TeV very large hadron collider.

Continue reading… Richard Ruiz (IPPP-Durham, UK)

Andrew J. Long (Kavli Institute for Cosmological Physics, University of Chicago) Tue. February 13th, 2018
11:30 am-12:30 am

Testing baryons from bubbles with colliders and cosmology  
“Why is there more matter than antimatter?”  This simple question is arguably the most longstanding and challenging problem in modern cosmology, but with input from the next generation of particle physics experiments we may finally have an answer!  In the talk I will discuss how precision measurements of the Higgs boson at the LHC and future high energy collider experiments will be used to test the idea that the matter-antimatter asymmetry arose during the electroweak phase transition in the fractions of a second after the big bang.  Other cosmological phase transitions can also provide the right environment for generating the matter excess. 

Continue reading… Andrew J. Long (Kavli Institute for Cosmological Physics, University of Chicago)

Ayres Freitas (University of Pittsburgh) Tue. February 6th, 2018
11:30 am-12:30 am

Radiative Corrections in Universal Extra Dimensions

Universal extra dimensions is an interesting extension of the Standard Model
that is naturally protected from electroweak precision constraints and provides
a natural dark matter candidate. Its phenomenology at the LHC is strongly
affected by radiative corrections. On one hand, QCD corrections are important
for understanding the production of heavy gluons and quarks, which are the
particles with the largest production rates at the LHC. On the other hand,
radiative corrections crucially modify the mass spectrum and interactions of the
heavy resonances. This talk will describe recent progress on both of these

Continue reading… Ayres Freitas (University of Pittsburgh)

David McKeen (University of Pittsburgh) Tue. January 30th, 2018
11:30 am-12:30 am

Neutrino Portal Dark Matter

Dark matter that interacts with the standard model (SM) through the “neutrino portal” is a possibility that is relatively less well studied than other scenarios. In such a setup, the dark matter communicates with the SM primarily through its interactions with neutrinos. In this talk, I will motivate neutrino portal dark matter and discuss some new tests of this possibility.

Continue reading… David McKeen (University of Pittsburgh)

Anders Johan Andreassen (Harvard University) Tue. January 23rd, 2018
11:30 am-12:30 pm

Tunneling in Quantum Field Theory and the Ultimate Fate of our Universe

One of the most concrete implications of the discovery of the Higgs boson is that, in the absence of physics beyond the standard model, the long-term fate of our universe can now be established through precision calculations. Are we in a metastable minimum of the Higgs potential or the true minimum? If we are in a metastable vacuum, what is its lifetime? To answer these questions, we need to understand tunneling in quantum field theory.This talk will give an overview of the interesting history of tunneling rate calculations and all of its complications in calculating functional determinants of fluctuations around the bounce solutions.

Continue reading… Anders Johan Andreassen (Harvard University)

Scroll To Top