Shopping cart

close

Past Events

Event Date Summary
Raymond Brock (Michigan State University) Thu. November 21st, 2019
4:00 pm-5:00 pm

That Spin Zero Boson Changes Everything: The Future of the Energy Frontier in Particle Physics

The “Higgs Boson” discovery requires us to think differently about planning for the future of Particle Physics. While the decades-long confirmation of the Standard Model itself is an historic episode – as a dynamical model of nature, it is not helpful as a clear guide to the future. I will l review the features of the Standard Model that make it superb, but also  point out why it’s frustrating, and I’ll describe the hints that motivate us for the coming decades.

Continue reading… Raymond Brock (Michigan State University)

Jesse Thaler (MIT) Thu. November 14th, 2019
4:00 pm-5:00 pm

Particle Physics meets Machine Learning

Modern machine learning has had an outsized impact on many scientific fields, and particle physics is no exception.  What is special about particle physics, though, is the vast amount of theoretical and experimental knowledge that we already have about many problems in the field.  In this colloquium, I present two cases studies involving quantum chromodynamics (QCD) at the Large Hadron Collider (LHC), highlighting the fascinating interplay between theoretical principles and machine learning strategies.  First, by cataloging the space of all possible QCD measurements, we (re)discovered technology relevant for self-driving cars.  Second,

Continue reading… Jesse Thaler (MIT)

Lisa Lapidus (Michigan State Univ) Thu. November 7th, 2019
4:00 pm-5:00 pm

Protein monomer dynamics control the first steps of aggregation and disease

Many neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, are caused by uncontrolled aggregation of proteins.  While many aggregation-prone proteins ultimately form fibrillary structures, evidence suggests that early, unstructured aggregates are toxic to neurons.  The complexity and dynamics of unfolded protein ensembles may be the ultimate speed limit of folding and play a crucial role in aggregation. In my lab over the past several years we have investigated the reconfiguration dynamics of unfolded proteins by measuring the rate of intramolecular diffusion, the rate one part of the chain diffuses relative to another. 

Continue reading… Lisa Lapidus (Michigan State Univ)

Alexandra Boltasseva (Purdue) Machine-Learning-Assisted Photonics: From Optimized Design to Quantum Measurements Thu. October 31st, 2019
4:00 pm-5:00 pm

Emerging photonic concepts such as optical metamaterials, metasurfaces, novel lasers, single-photon sources and other quantum photonic devices together with novel optical material platforms promise to bring revolutionary advances to information processing and storage, communication systems, energy conversion, imaging, sensing and quantum information technology. In pursuit of the next generation of photonic technologies, machine learning approaches have emerged as a powerful tool to discover unconventional optical designs and even uncover new optical phenomena. In this talk, various photonic design approaches as well as emerging material platforms will be discussed showcasting machine-learning-assisted topology optimization for efficient thermophotovoltaic metasurface designs as well as machine-learning enabled quantum optical measurements.

Continue reading… Alexandra Boltasseva (Purdue) Machine-Learning-Assisted Photonics: From Optimized Design to Quantum Measurements

***POSTPONED*** Raymond Brock (Michigan State Univ) Thu. October 24th, 2019
4:00 pm-5:00 pm

 ***POSTPONED*** That Spin Zero Boson Changes Everything: The Future of the Energy Frontier in Particle Physics

The “Higgs Boson” discovery requires us to think differently about planning for the future of Particle Physics. While the decades-long confirmation of the Standard Model itself is an historic episode – as a dynamical model of nature, it is not helpful as a clear guide to the future. I will l review the features of the Standard Model that make it superb, but also  point out why it’s frustrating, and I’ll describe the hints that motivate us for the coming decades.

Continue reading… ***POSTPONED*** Raymond Brock (Michigan State Univ)

Nick Abbott (Biomolecular Engineering, Cornell) Thu. October 17th, 2019
4:00 pm-5:00 pm

EQUILIBRIUM AND NON-EQUILIBRIUM INTERFACIAL STATES OF LIQUID CRYSTALS IN CONTACT WITH BIOLOGICAL SYSTEMS

The generation, management and transduction of dynamic mechanical forces is one of the central sciences of living biological systems.  The development of synthetic soft matter that can exchange mechanical information with bacterial and mammalian cells has the potential to yield new classes of hybrid material systems that can report on and direct living biological systems.  This presentation will explore mechanical interactions of synthetic liquid crystalline materials and living systems in the context of molecular assemblies and cells.  The examples discussed in this presentation will illustrate how both equilibrium and non-equilibrium interfacial states of liquid crystals can give rise to new classes of functional soft materials that pass mechanical,

Continue reading… Nick Abbott (Biomolecular Engineering, Cornell)

Michael Poirier (Ohio State University) Thu. October 10th, 2019
4:00 pm-5:00 pm

The Physics of the Human Genome

Each of our cells contain 1 meter of DNA that is tightly wrapped to fit inside the ~5 micron wide nucleus of the cell. This highly condensed state of our DNA plays a central role in how the information in our genes is replicated, read and repaired. Yet, the physical mechanics by which genome organization regulates the processing of DNA remains a mystery. I will review what is currently understood about genomic organization with a focus on the first level of organization, the nucleosome – a 50 nm stretch of DNA tightly wrapped ~2 times around a protein core.

Continue reading… Michael Poirier (Ohio State University)

Andrew Cleland (U Chicago) Thu. October 3rd, 2019
4:00 pm-5:00 pm

Quantum control of acoustic phonons

Superconducting qubits provide an excellent approach to building quantum computing systems, due to their good performance metrics and their easy lithographic scaling to large qubit numbers. In addition, these qubits provide unique opportunities as testbed systems for quantum communication as well as developing hybrid quantum systems. Here, I will discuss applications for superconducting qubits in generating and detecting individual phonons, in the form of quantum surface acoustic wave (SAW) excitations, and using these phonon states to generate remote quantum entanglement. Specifically, I will describe recent experiments [1,2] where we have demonstrated the use of reasonably high finesse acoustic Fabry-Perot structures to store acoustic phonon Fock states,

Continue reading… Andrew Cleland (U Chicago)

Thijs Heus (Cleveland State University) Thu. September 26th, 2019
4:00 pm-5:00 pm

Organization of clouds, and their impact on the climate system

Clouds are some of the largest uncertainties in weather and climate forecasting. They are also an interesting physical phenomenon, and despite having been studied and admired for millennia, there is still a lot that we do not understand, thanks to the multitude of physical processes. In the atmospheric system, clouds serve as a key component of a heat engine. The solar/infrared radiative fingerprint of clouds depends strongly on the droplet size distribution: Smaller droplets will result in a larger reflectivity, but also alters cloud lifetime. These effects are further complicated by organization and clustering of cloud fields.

Continue reading… Thijs Heus (Cleveland State University)

Goran Senjanovic (ICTP) Thu. September 19th, 2019
4:00 pm-5:00 pm

Neutrino: chronicles of an aloof witness

As you read this, trillions of neutrinos from the sun are passing through every square cm of your body, doing no harm whatsoever. They convey information from the depth of the universe and have been present from its very birth. Neutrinos have captured the imagination of physicists from the time they were first conceived and have repeatedly provided a window into new physics.

A question stood out for decades: Are neutrinos massive like their seemingly inseparable electron siblings? It took almost seventy years to obtain the positive answer.

Continue reading… Goran Senjanovic (ICTP)

Christine Duval (Chem Engineering, CWRU) Thu. September 12th, 2019
4:00 pm-5:00 pm

Countering Weapons of Mass Destruction with Advanced Separations

Illicit nuclear activities such as the assembly of weapons of mass destruction or radiological dispersal devices (“dirty bombs”) pose a threat to national and world security.  National governments and world-wide organizations such as the International Atomic Energy Agency share an interest in monitoring and regulating international nuclear processes and materials. Nuclear forensics involves the examination of radioactive materials, using a variety of analytical techniques, with an end goal of determining the history and origin of the substance—guiding law-enforcement agencies as they determine “Whodunnit?” 

This talk will introduce the role of scientists in nuclear forensics and identify technological needs for fieldable radiation detection techniques.

Continue reading… Christine Duval (Chem Engineering, CWRU)

Bharat Ratra (Kansas State University) Thu. September 5th, 2019
4:00 pm-5:00 pm

Spatial Curvature, Dark Energy Dynamics, Neither, or Both?

Experiments and observations over the two last decades have persuaded cosmologists that (as yet undetected) dark energy is by far the main component of the energy budget of the current universe. I review a few simple dark energy models and compare their predictions to observational data, to derive dark energy model-parameter constraints and to test consistency of different data sets. I conclude with a list of open cosmological questions.

Continue reading… Bharat Ratra (Kansas State University)


Scroll To Top