Shopping cart


Past Events

Event Date Summary
Audrey Bienfait (ENS-Lyon) Michelson Postdoctoral Prize Lecture Fri. February 21st, 2020
12:45 pm-1:45 pm

Microwave amplification at the quantum limit: implementing and operating a Josephson parametric amplifier

A microwave electromagnetic field cooled down to millikelvin temperatures can reach its ground state: at this stage, all thermal fluctuations are suppressed and only quantum fluctuations remain. Reaching this regime enabled manipulation of the microwave fields at the single-photon level but also required the development of ultra-low-noise microwave amplifiers to ensure the detection of these quantum microwave states. Relying on non-dissipative parametric amplification using Josephson junctions, these Josephson parametric amplifiers (JPA) perform amplification while adding as little noise as allowed by quantum mechanics.

Continue reading… Audrey Bienfait (ENS-Lyon) Michelson Postdoctoral Prize Lecture

Audrey Bienfait (ENS-Lyon) Michelson Postdoctoral Prize Colloquium Thu. February 20th, 2020
4:00 pm-5:00 pm

Interfacing quantum microwaves to spins and phonons

Circuit quantum electrodynamics is a currently very active field of research. Since the discoveries that an artificial spin, the so-called qubit, can be implemented using a superconducting non-linear circuit and can coherently interact with the electromagnetic field at the single-photon level, it has gathered strong interest for its potential for quantum computing but also for its ability to create, manipulate and detect microwave states with an exquisite precision. In this talk, I will present how the tools and concepts developed for quantum circuits can be used to interface microwaves and phonons,

Continue reading… Audrey Bienfait (ENS-Lyon) Michelson Postdoctoral Prize Colloquium

Audrey Bienfait (ENS-Lyon) Michelson Postdoctoral Prize Lecture Wed. February 19th, 2020
12:45 pm-1:45 pm

Magnetic resonance with quantum microwaves

In usual magnetic resonance experiments, the coupling between spins and their electromagnetic environment is quite weak, severely limiting the sensitivity of the measurements and any interaction at the quantum level between spins and microwaves. In this lecture, I will show that using a Josephson parametric microwave amplifier combined with high-quality factor superconducting micro-resonators cooled at millikelvin temperatures enable the implementation of a magnetic resonance spectrometer where the detection sensitivity is limited by quantum fluctuations of the electromagnetic field instead of thermal or technical noise. The small mode volume superconducting microwave resonator also enhances the spin-resonator coupling up to the point where quantum fluctuations have an effect on the spin dynamics: The spin spontaneous emission of microwave photons in the resonator is dramatically enhanced by the Purcell effect,

Continue reading… Audrey Bienfait (ENS-Lyon) Michelson Postdoctoral Prize Lecture

Audrey Bienfait, (ENS-Lyon) Michelson Postdoctoral Prize Lecture Mon. February 17th, 2020
12:45 pm-1:45 pm

Phonon-mediated quantum state transfer and remote entanglement

Heavily used in classical signal processing, surface acoustic waves (SAWs) have also been proposed as a means to coherently couple distant solid-state quantum systems. Several groups have already reported the coherent coupling of standing SAWs modes to superconducting qubits, opening the door to the control and detection of quantum phonon states. In this lecture, I will explore the coherent coupling of superconducting qubits to propagating SAWs, demonstrating that quantum state transfer as well as remote entanglement generation between superconducting qubits using propagating SAWs can be realized.

Continue reading… Audrey Bienfait, (ENS-Lyon) Michelson Postdoctoral Prize Lecture

Scroll To Top