When liquids are cooled rapidly, particles can no longer move freely and the liquid becomes a glass. Above the glass temperature Tg, relaxation in supercooled liquids obeys the Vogel-Fulcher law, τ ∼ exp[-E/(T-T0)] with T0 < Tg. The physical origin of this behavior is still largely unknown. We review some theoretical models for glassy relaxation. We then examine elastic properties of supercooled liquids and explore the role of stress in glassy relaxation.