Over the past decade, observations have sparked a renaissance of planetary studies, with nearly 400 planets discovered in orbit about external stars and an ever-increasing inventory of our solar system. These planetary systems display an unexpected diversity in their observed orbits and in the types of bodies found. This wealth of new data poses a number of dynamical issues that will be discussed in this talk: How do planets migrate from one location in a solar system to another, and how does migration ultimately produce the observed distribution of orbital elements? How does turbulence, which provides stochastic forcing, affect both early migration of planetary cores and the maintenence of mean motion resonance? What role is played by secular resonance? How do solar system properties constrain the birth environments of stars and planetary systems? And finally: How can we use this collection of newly discovered astronomical objects as physical laboratories to study chaos and general relativity?