Magnetic levitation techniques, whereby a strong magnetic field gradient partially or completely counteracts the Earth’s gravitational force, are applied to a variety of fluids problems.Ê Static properties are studied as a function of the effective gravitational force, and dynamic behavior is investigated by varying the magnet current temporally over time scales as fast as tens of milliseconds.Ê Results for the stability, collapse dynamics, and resonance behavior of liquid bridges in air will be presented.Ê Additionally, results on gravitationally-driven fluid interface instabilities will be discussed, showing how this technique facilitates measurements in regions of parameter space that are not possible using extant methods.