Shopping cart

close

Past Events

Event Date Summary
Observation Of Interlayer Phonons in Transition Metal Dichalogenide Atomic Layers and Heterostructures – Rui He Mon. May 2nd, 2016
12:30 pm-1:30 pm

Interlayer phonon modes in atomically thin transition metal dichalcogenide (TMD) heterostructures were observed for the first time. We measured the low-frequency Raman response of MoS2/WSe2 and MoSe2/MoS2 heterobilayers. We discovered a distinctive Raman mode (30 – 35 cm-1) that cannot be found in any individual monolayers (see Fig. 1). By comparing with Raman spectra of bilayer (2L) MoS2, 2L MoSe2 and 2L WSe2, we identified the new Raman mode as the layer breathing mode (LBM) arising from the perpendicular vibration between the two TMD layers. The LBM only emerges in bilayer regions with atomically close layer-layer proximity and clean interface.

Continue reading… Observation Of Interlayer Phonons in Transition Metal Dichalogenide Atomic Layers and Heterostructures – Rui He

The 17 Position Knob: Tuning Interactions With Rare Earths – Paul C. Canfield Mon. April 18th, 2016
12:30 pm-1:30 pm

Physicists see the rare earth group of elements as a powerful tool for tuning the properties of materials. Choice or control of rare earths can be used to modify (i) the size of the unit cell, (ii) the size of the local moment and degree of coupling, (iii) the size and direction of magnetic anisotropy, (iv) the amount of entropy that can be removed at low temperatures, (v) the degree of band filling, and / or (vi) the degree of hybridization. In this seminar I will provide an overview and examples of how this region of the periodic table can be used to guide and inspire research into a wide swath of novel materials and ground states.

Continue reading… The 17 Position Knob: Tuning Interactions With Rare Earths – Paul C. Canfield

Mapping the Phase Diagram of a One-Dimensional Topological Superconductor – Sergey Frolov Mon. April 11th, 2016
12:30 pm-1:30 pm

Download the abstract Tunneling spectroscopy measurements on one-dimensional superconducting hybrid materials have revealed signatures of Majorana fermions which are the edge states of a bulk topological superconducting phase. We couple strong spin-orbit semiconductor InSb nanowires to conventional NbTiN superconductors to obtain additional signatures of Majorana fermions and to explore the magnetic-field driven topological phase transition. With improved device fabrication, namely more transparent contacts to superconductors and stronger coupled gate electrodes, we are mapping out the phase diagram of the topological phase in the space of Zeeman energy and chemical potential, and investigating the apparent closing and re-opening of the superconducting gap.

Continue reading… Mapping the Phase Diagram of a One-Dimensional Topological Superconductor – Sergey Frolov

Nanoscopic Manipulation and Nanoimaging of Liquid Crystals – Charles Rosenblatt Mon. April 4th, 2016
12:30 pm-1:30 pm

Liquid crystals present a remarkable array of fascinating physical phenomena, and are now a >200 billion dollar world-wide industry. As liquid crystals most often are housed in a closed cell or sit atop a substrate, the treatment of the substrate plays a pivotal role. For the past fifteen years we have developed and exploited scanning probe microscope techniques to manipulate the liquid crystal’s orientation and order parameter at a surface on length scales down to a few tens of nanometers, and performed optical imaging with volumetric resolution 1000 times better than confocal microscopy. In this talk I will present our experimental techniques at the nanoscale,

Continue reading… Nanoscopic Manipulation and Nanoimaging of Liquid Crystals – Charles Rosenblatt

Nanoscopic Manipulation and Nanoimaging of Liquid Crystals – Charles Rosenblatt Mon. April 4th, 2016
12:30 pm-1:30 pm

Liquid crystals present a remarkable array of fascinating physical phenomena, and are now a >200 billion dollar world-wide industry. As liquid crystals most often are housed in a closed cell or sit atop a substrate, the treatment of the substrate plays a pivotal role. For the past fifteen years we have developed and exploited scanning probe microscope techniques to manipulate the liquid crystal’s orientation and order parameter at a surface on length scales down to a few tens of nanometers, and performed optical imaging with volumetric resolution 1000 times better than confocal microscopy. In this talk I will present our experimental techniques at the nanoscale,

Continue reading… Nanoscopic Manipulation and Nanoimaging of Liquid Crystals – Charles Rosenblatt

Nanomaterials in Liquid Crystal Mediated Interactions – Rajratan Basu Mon. March 28th, 2016
4:00 pm-5:00 pm

In liquid crystals (LC) the effect of nonmesogenic guest-nanoparticles on the LC’s bulk properties often rests on the molecular identification at the nanoscale in order to share and disseminate the `information’ coded into the nanostructure of the nanoparticles. I will present two types of nanomaterials and their intriguing interactions with LCs. Graphene is a twodimensional crystalline carbon allotrope where carbon atoms are densely packed in a regular sp2- bonded atomic-scale hexagonal pattern. This graphene nanostructure can used to enhance the tilted smectic-C order in an LC, giving rise to a faster ferroelectric switching. The presence of graphene can improve the electro-optic response and decrease the rotational viscosity of an LC.

Continue reading… Nanomaterials in Liquid Crystal Mediated Interactions – Rajratan Basu

APS March Meeting Mon. March 14th, 2016
12:30 pm-1:30 pm

Continue reading… APS March Meeting

Preview APS March Meeting Talks – Graduate Students Thu. March 10th, 2016
11:00 am-12:00 pm

Sukrit Sucharitacul, Few-layer III-VI and IV-VI 2D semiconductor transistorsShuhao Liu, Imaging the long diffusion lengths of photo-generated carriers in mixed halide perovskite films

Shuhao Liu, Imaging the long diffusion lengths of photo-generated carriers in mixed halide perovskite films Robert Badea, Magneto-optical mapping of the domain wall pinning potential in ferromagnetic films

Robert Badea, Magneto-optical mapping of the domain wall pinning potential in ferromagnetic films Michael Wolf, Coupling a driven magnetic vortex to individual nitrogen-vacancy spins for fast, nanoscale addressability and coherent manipulation

Michael Wolf, Coupling a driven magnetic vortex to individual nitrogen-vacancy spins for fast,

Continue reading… Preview APS March Meeting Talks – Graduate Students

FMR-Drive Pure Spin Transport in Metals and Magnetic Insulators – Fengyuan Yang Mon. March 7th, 2016
12:30 pm-1:30 pm

Spintronics relies on the generation, transmission, manipulation, and detection of spin current mediated by itinerant charges or magnetic excitations. Ferromagnetic resonance (FMR) spin pumping is a powerful technique in understanding pure spin current. Building on the highquality Y3Fe5O12 (YIG) films grown by our sputtering technique and the large inverse spin Hall effect (ISHE) signals enabled by these films, we have characterized pure spin currents in several classes of materials with different magnetic structures, including: nonmagnetic (NM) metals, ferromagnetic (FM) metals, nonmagnetic insulators, and antiferromagnetic (AF) insulators. The spin Hall angles determined for a series of 3d, 4d, and 5d NM metals show that both atomic number and d-electron count play important roles in spin Hall physics.

Continue reading… FMR-Drive Pure Spin Transport in Metals and Magnetic Insulators – Fengyuan Yang

Tailored Radiative Processes of Quantum Dots and 2D Materials – Maiken H. Mikkelsen Mon. February 29th, 2016
4:00 pm-5:00 pm

Metal-dielectric nanocavities have the ability to tightly confine light to small mode volumes resulting in strongly increased local density of states. Placing fluorescing molecules or semiconductor materials in this region enables wide control of radiative processes including absorption and spontaneous emission rates, quantum efficiency, and emission directionality. In this talk, I will describe our recent experiments utilizing a tunable plasmonic platform where emitters are sandwiched in a sub-10-nm gap between colloidally synthesized silver nanocubes and a metal film. Utilizing dye molecules with an intrinsic long lifetime reveals spontaneous emission rate enhancements exceeding a factor of 1,000 while maintaining directional emission and high quantum efficiency [Akselrod et al.

Continue reading… Tailored Radiative Processes of Quantum Dots and 2D Materials – Maiken H. Mikkelsen

Aspects of Photonic Topological Insulators – Mikael Rechtsman Mon. February 22nd, 2016
12:30 pm-1:30 pm

I will present the observation of the topological protection of light – specifically, a photonic Floquet topological insulator. Topological insulators (TIs) are solid-state materials that are insulators in the bulk, but conduct electricity along their surfaces – and are intrinsically robust to disorder. In particular, when a surface electron in a TI encounters a defect, it simply goes around it without scattering, always exhibiting – quite strikingly – perfect transmission. The structure is an array of coupled helical waveguides (the helicity generates a fictitious circularly-polarized electric field that leads to the TI behavior), and light propagating through it is ‘topologically protected’

Continue reading… Aspects of Photonic Topological Insulators – Mikael Rechtsman

Combined First-Principles Molecular Dynamics / Density-Functional Theory Study of Ammonia Oxidation on Pt(100) Electrode – Dmitry Skachkov Mon. February 1st, 2016
12:30 pm-1:30 pm

A combined first-principles molecular dynamics/density functional theory study of the electrooxidation of ammonia is conducted to gain an atomic-level understanding of the electrocatalytic processes at the Pt(1 0 0)/alkaline solution interface and to probe the mechanistic details of ammonia electrooxidation on the metal surface. A systematic study of adsorption and relative stability of ammonia and the intermediate species on the Pt(1 0 0) surface as a function of potential is carried out and activation energy profiles for the mechanistic steps in the ammonia oxidation are presented. The reaction mechanism is potential dependent: the modeling study supports the Oswin and Salomon’s mechanism for moderate surface potentials (≥ +0.5 V vs.

Continue reading… Combined First-Principles Molecular Dynamics / Density-Functional Theory Study of Ammonia Oxidation on Pt(100) Electrode – Dmitry Skachkov


Scroll To Top